• Previous Article
    Some classes of surfaces in $\mathbb{R}^3$ and $\M_3$ arising from soliton theory and a variational principle
  • PROC Home
  • This Issue
  • Next Article
    Collision dynamics of circularly polarized solitons in nonintegrable coupled nonlinear Schrödinger system
2009, 2009(Special): 771-779. doi: 10.3934/proc.2009.2009.771

A simplified mathematical model of solid tumor regrowth with therapies

1. 

Mathematics Department, College of William and Mary, Williamsburg, VA 23187, United States

2. 

Mathematics Department, The College of William and Mary, United States, United States

Received  July 2008 Revised  June 2009 Published  September 2009

A simplified mathematical model of solid tumor regrowth is analyzed. When the model system is disturbed by radiation and chemotherapy, which are given by discontinuous functions, the system loses its smoothness. For the purpose of comparison and verification of therapy efficacy, a weak solution is constructed. Some suggestions about effective combination of treatments are also given.
Citation: Jianjun Paul Tian, Kendall Stone, Thomas John Wallin. A simplified mathematical model of solid tumor regrowth with therapies. Conference Publications, 2009, 2009 (Special) : 771-779. doi: 10.3934/proc.2009.2009.771
[1]

Shihe Xu. Analysis of a delayed free boundary problem for tumor growth. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 293-308. doi: 10.3934/dcdsb.2011.15.293

[2]

Shihe Xu, Yinhui Chen, Meng Bai. Analysis of a free boundary problem for avascular tumor growth with a periodic supply of nutrients. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 997-1008. doi: 10.3934/dcdsb.2016.21.997

[3]

Zejia Wang, Suzhen Xu, Huijuan Song. Stationary solutions of a free boundary problem modeling growth of angiogenesis tumor with inhibitor. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-13. doi: 10.3934/dcdsb.2018129

[4]

Yongzhi Xu. A free boundary problem model of ductal carcinoma in situ. Discrete & Continuous Dynamical Systems - B, 2004, 4 (1) : 337-348. doi: 10.3934/dcdsb.2004.4.337

[5]

Junde Wu, Shangbin Cui. Asymptotic behavior of solutions for parabolic differential equations with invariance and applications to a free boundary problem modeling tumor growth. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 737-765. doi: 10.3934/dcds.2010.26.737

[6]

Shihe Xu, Meng Bai, Fangwei Zhang. Analysis of a free boundary problem for tumor growth with Gibbs-Thomson relation and time delays. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-17. doi: 10.3934/dcdsb.2017213

[7]

Svetlana Bunimovich-Mendrazitsky, Yakov Goltser. Use of quasi-normal form to examine stability of tumor-free equilibrium in a mathematical model of bcg treatment of bladder cancer. Mathematical Biosciences & Engineering, 2011, 8 (2) : 529-547. doi: 10.3934/mbe.2011.8.529

[8]

Hua Chen, Wenbin Lv, Shaohua Wu. A free boundary problem for a class of parabolic type chemotaxis model. Kinetic & Related Models, 2015, 8 (4) : 667-684. doi: 10.3934/krm.2015.8.667

[9]

Chengxia Lei, Yihong Du. Asymptotic profile of the solution to a free boundary problem arising in a shifting climate model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 895-911. doi: 10.3934/dcdsb.2017045

[10]

Jia-Feng Cao, Wan-Tong Li, Meng Zhao. On a free boundary problem for a nonlocal reaction-diffusion model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-23. doi: 10.3934/dcdsb.2018128

[11]

Toyohiko Aiki. A free boundary problem for an elastic material. Conference Publications, 2007, 2007 (Special) : 10-17. doi: 10.3934/proc.2007.2007.10

[12]

Francesca Bucci, Irena Lasiecka. Regularity of boundary traces for a fluid-solid interaction model. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 505-521. doi: 10.3934/dcdss.2011.4.505

[13]

Antonio Fasano, Mario Primicerio, Andrea Tesi. A mathematical model for spaghetti cooking with free boundaries. Networks & Heterogeneous Media, 2011, 6 (1) : 37-60. doi: 10.3934/nhm.2011.6.37

[14]

Filippo Morabito. Singly periodic free boundary minimal surfaces in a solid cylinder of $\mathbb{R}^3$. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4987-5001. doi: 10.3934/dcds.2015.35.4987

[15]

Hayk Mikayelyan, Henrik Shahgholian. Convexity of the free boundary for an exterior free boundary problem involving the perimeter. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1431-1443. doi: 10.3934/cpaa.2013.12.1431

[16]

T.L. Jackson. A mathematical model of prostate tumor growth and androgen-independent relapse. Discrete & Continuous Dynamical Systems - B, 2004, 4 (1) : 187-201. doi: 10.3934/dcdsb.2004.4.187

[17]

J.C. Arciero, T.L. Jackson, D.E. Kirschner. A mathematical model of tumor-immune evasion and siRNA treatment. Discrete & Continuous Dynamical Systems - B, 2004, 4 (1) : 39-58. doi: 10.3934/dcdsb.2004.4.39

[18]

J. Ignacio Tello. On a mathematical model of tumor growth based on cancer stem cells. Mathematical Biosciences & Engineering, 2013, 10 (1) : 263-278. doi: 10.3934/mbe.2013.10.263

[19]

Hyun Geun Lee, Yangjin Kim, Junseok Kim. Mathematical model and its fast numerical method for the tumor growth. Mathematical Biosciences & Engineering, 2015, 12 (6) : 1173-1187. doi: 10.3934/mbe.2015.12.1173

[20]

Shuo Wang, Heinz Schättler. Optimal control of a mathematical model for cancer chemotherapy under tumor heterogeneity. Mathematical Biosciences & Engineering, 2016, 13 (6) : 1223-1240. doi: 10.3934/mbe.2016040

 Impact Factor: 

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (0)

[Back to Top]