2009, 2009(Special): 536-547. doi: 10.3934/proc.2009.2009.536

On the one-dimensional version of the dynamical Marguerre-Vlasov system with thermal effects

1. 

National Laboratory of Scientific Computation, LNCC/MCT, Av. Getulio Vargas 333, Quitandinha, Petrópolis, RJ, 25651-070, Brazil, Brazil

Received  July 2008 Revised  April 2009 Published  September 2009

A one dimensional version of the dynamic Marguerre-Vlasov system in the presence of thermal effects is considered. The system depends on a parameter $\epsilon>0$ in a singular way as $\epsilon\to0$. Our interest is twofold: 1) To find the limit system as $\epsilon\to0$ and 2) To study the asymptotic behavior as $t\to+\infty$ of the total energy $E_{\epsilon}(t)$ and compare it with the total energy of the limit system.
Citation: Gustavo Alberto Perla Menzala, Julian Moises Sejje Suárez. On the one-dimensional version of the dynamical Marguerre-Vlasov system with thermal effects. Conference Publications, 2009, 2009 (Special) : 536-547. doi: 10.3934/proc.2009.2009.536
[1]

Blanca Ayuso, José A. Carrillo, Chi-Wang Shu. Discontinuous Galerkin methods for the one-dimensional Vlasov-Poisson system. Kinetic & Related Models, 2011, 4 (4) : 955-989. doi: 10.3934/krm.2011.4.955

[2]

Zhi-An Wang, Kun Zhao. Global dynamics and diffusion limit of a one-dimensional repulsive chemotaxis model. Communications on Pure & Applied Analysis, 2013, 12 (6) : 3027-3046. doi: 10.3934/cpaa.2013.12.3027

[3]

Rogério Martins. One-dimensional attractor for a dissipative system with a cylindrical phase space. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 533-547. doi: 10.3934/dcds.2006.14.533

[4]

Robert Glassey, Stephen Pankavich, Jack Schaeffer. Separated characteristics and global solvability for the one and one-half dimensional Vlasov Maxwell system. Kinetic & Related Models, 2016, 9 (3) : 455-467. doi: 10.3934/krm.2016003

[5]

Stephen Pankavich, Nicholas Michalowski. Global classical solutions for the "One and one-half'' dimensional relativistic Vlasov-Maxwell-Fokker-Planck system. Kinetic & Related Models, 2015, 8 (1) : 169-199. doi: 10.3934/krm.2015.8.169

[6]

Mihai Bostan, Thierry Goudon. Low field regime for the relativistic Vlasov-Maxwell-Fokker-Planck system; the one and one half dimensional case. Kinetic & Related Models, 2008, 1 (1) : 139-170. doi: 10.3934/krm.2008.1.139

[7]

Toyohiko Aiki, Martijn Anthonissen, Adrian Muntean. On a one-dimensional shape-memory alloy model in its fast-temperature-activation limit. Discrete & Continuous Dynamical Systems - S, 2012, 5 (1) : 15-28. doi: 10.3934/dcdss.2012.5.15

[8]

Li Fang, Zhenhua Guo. Zero dissipation limit to rarefaction wave with vacuum for a one-dimensional compressible non-Newtonian fluid. Communications on Pure & Applied Analysis, 2017, 16 (1) : 209-242. doi: 10.3934/cpaa.2017010

[9]

Inbo Sim. On the existence of nodal solutions for singular one-dimensional $\varphi$-Laplacian problem with asymptotic condition. Communications on Pure & Applied Analysis, 2008, 7 (4) : 905-923. doi: 10.3934/cpaa.2008.7.905

[10]

Tomasz Nowicki, Grezegorz Świrszcz. Neutral one-dimensional attractor of a two-dimensional system derived from Newton's means. Conference Publications, 2005, 2005 (Special) : 700-709. doi: 10.3934/proc.2005.2005.700

[11]

Michel Cristofol, Patricia Gaitan, Kati Niinimäki, Olivier Poisson. Inverse problem for a coupled parabolic system with discontinuous conductivities: One-dimensional case. Inverse Problems & Imaging, 2013, 7 (1) : 159-182. doi: 10.3934/ipi.2013.7.159

[12]

Tomasz Cieślak, Philippe Laurençot. Looking for critical nonlinearity in the one-dimensional quasilinear Smoluchowski-Poisson system. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 417-430. doi: 10.3934/dcds.2010.26.417

[13]

Shi Jin, Min Tang, Houde Han. A uniformly second order numerical method for the one-dimensional discrete-ordinate transport equation and its diffusion limit with interface. Networks & Heterogeneous Media, 2009, 4 (1) : 35-65. doi: 10.3934/nhm.2009.4.35

[14]

Sebastian van Strien. One-dimensional dynamics in the new millennium. Discrete & Continuous Dynamical Systems - A, 2010, 27 (2) : 557-588. doi: 10.3934/dcds.2010.27.557

[15]

Maria João Costa. Chaotic behaviour of one-dimensional horseshoes. Discrete & Continuous Dynamical Systems - A, 2003, 9 (3) : 505-548. doi: 10.3934/dcds.2003.9.505

[16]

Francisco J. López-Hernández. Dynamics of induced homeomorphisms of one-dimensional solenoids. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4243-4257. doi: 10.3934/dcds.2018185

[17]

Yunping Jiang. On a question of Katok in one-dimensional case. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1209-1213. doi: 10.3934/dcds.2009.24.1209

[18]

Nguyen Dinh Cong, Roberta Fabbri. On the spectrum of the one-dimensional Schrödinger operator. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 541-554. doi: 10.3934/dcdsb.2008.9.541

[19]

Nicolai T. A. Haydn. Phase transitions in one-dimensional subshifts. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1965-1973. doi: 10.3934/dcds.2013.33.1965

[20]

James Nolen, Jack Xin. KPP fronts in a one-dimensional random drift. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 421-442. doi: 10.3934/dcdsb.2009.11.421

 Impact Factor: 

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (0)

[Back to Top]