
Previous Article
Numerical and geometric aspects of the nonholonomic SHAKE and RATTLE methods
 PROC Home
 This Issue

Next Article
Timedependent obstacle problem in thermohydraulics
Parameter identification and quantitative comparison of differential equations that describe physiological adaptation of a bacterial population under iron limitation
1.  Dept. Mathematics and Statistics, University of Guelph, Guelph, On, Canada, N1G 2W1, Canada 
2.  Department of Mathematics and Statistics, University of Guelph, Guelph, On, N1G 2W1, Canada 
[1] 
Edward J. Allen. Derivation and computation of discretedelay and continuousdelay SDEs in mathematical biology. Mathematical Biosciences & Engineering, 2014, 11 (3) : 403425. doi: 10.3934/mbe.2014.11.403 
[2] 
Qinqin Chai, Ryan Loxton, Kok Lay Teo, Chunhua Yang. A unified parameter identification method for nonlinear timedelay systems. Journal of Industrial & Management Optimization, 2013, 9 (2) : 471486. doi: 10.3934/jimo.2013.9.471 
[3] 
Eugene Kashdan, Dominique Duncan, Andrew Parnell, Heinz Schättler. Mathematical methods in systems biology. Mathematical Biosciences & Engineering, 2016, 13 (6) : iii. doi: 10.3934/mbe.201606i 
[4] 
Avner Friedman. Conservation laws in mathematical biology. Discrete & Continuous Dynamical Systems  A, 2012, 32 (9) : 30813097. doi: 10.3934/dcds.2012.32.3081 
[5] 
Avner Friedman. PDE problems arising in mathematical biology. Networks & Heterogeneous Media, 2012, 7 (4) : 691703. doi: 10.3934/nhm.2012.7.691 
[6] 
Zhuangyi Liu, Ramón Quintanilla. Time decay in dualphaselag thermoelasticity: Critical case. Communications on Pure & Applied Analysis, 2018, 17 (1) : 177190. doi: 10.3934/cpaa.2018011 
[7] 
Yuepeng Wang, Yue Cheng, I. Michael Navon, Yuanhong Guan. Parameter identification techniques applied to an environmental pollution model. Journal of Industrial & Management Optimization, 2018, 14 (2) : 817831. doi: 10.3934/jimo.2017077 
[8] 
Erika T. Camacho, Christopher M. KribsZaleta, Stephen Wirkus. The mathematical and theoretical biology institute  a model of mentorship through research. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 13511363. doi: 10.3934/mbe.2013.10.1351 
[9] 
Thorsten Hüls. Numerical computation of dichotomy rates and projectors in discrete time. Discrete & Continuous Dynamical Systems  B, 2009, 12 (1) : 109131. doi: 10.3934/dcdsb.2009.12.109 
[10] 
Heiko Enderling, Alexander R.A. Anderson, Mark A.J. Chaplain, Glenn W.A. Rowe. Visualisation of the numerical solution of partial differential equation systems in three space dimensions and its importance for mathematical models in biology. Mathematical Biosciences & Engineering, 2006, 3 (4) : 571582. doi: 10.3934/mbe.2006.3.571 
[11] 
John D. Nagy. The Ecology and Evolutionary Biology of Cancer: A Review of Mathematical Models of Necrosis and Tumor Cell Diversity. Mathematical Biosciences & Engineering, 2005, 2 (2) : 381418. doi: 10.3934/mbe.2005.2.381 
[12] 
Lei Wang, Jinlong Yuan, Yingfang Li, Enmin Feng, Zhilong Xiu. Parameter identification of nonlinear delayed dynamical system in microbial fermentation based on biological robustness. Numerical Algebra, Control & Optimization, 2014, 4 (2) : 103113. doi: 10.3934/naco.2014.4.103 
[13] 
Qinxi Bai, Zhijun Li, Lei Wang, Bing Tan, Enmin Feng. Parameter identification and numerical simulation for the exchange coefficient of dissolved oxygen concentration under ice in a boreal lake. Journal of Industrial & Management Optimization, 2017, 13 (5) : 116. doi: 10.3934/jimo.2018016 
[14] 
Mickael Chekroun, Michael Ghil, Jean Roux, Ferenc Varadi. Averaging of time  periodic systems without a small parameter. Discrete & Continuous Dynamical Systems  A, 2006, 14 (4) : 753782. doi: 10.3934/dcds.2006.14.753 
[15] 
Ciprian Preda. Discretetime theorems for the dichotomy of oneparameter semigroups. Communications on Pure & Applied Analysis, 2008, 7 (2) : 457463. doi: 10.3934/cpaa.2008.7.457 
[16] 
Ling Yun Wang, Wei Hua Gui, Kok Lay Teo, Ryan Loxton, Chun Hua Yang. Time delayed optimal control problems with multiple characteristic time points: Computation and industrial applications. Journal of Industrial & Management Optimization, 2009, 5 (4) : 705718. doi: 10.3934/jimo.2009.5.705 
[17] 
Shi Jin, Christof Sparber, Zhennan Zhou. On the classical limit of a timedependent selfconsistent field system: Analysis and computation. Kinetic & Related Models, 2017, 10 (1) : 263298. doi: 10.3934/krm.2017011 
[18] 
David M. Bortz. Characteristic roots for twolag linear delay differential equations. Discrete & Continuous Dynamical Systems  B, 2016, 21 (8) : 24092422. doi: 10.3934/dcdsb.2016053 
[19] 
Xuejuan Lu, Lulu Hui, Shengqiang Liu, Jia Li. A mathematical model of HTLVI infection with two time delays. Mathematical Biosciences & Engineering, 2015, 12 (3) : 431449. doi: 10.3934/mbe.2015.12.431 
[20] 
Jacky Cresson, Bénédicte Puig, Stefanie Sonner. Stochastic models in biology and the invariance problem. Discrete & Continuous Dynamical Systems  B, 2016, 21 (7) : 21452168. doi: 10.3934/dcdsb.2016041 
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]