2009, 2009(Special): 191-197. doi: 10.3934/proc.2009.2009.191

Spiral motion in classical mechanics

1. 

Departamento de Ciencias Básicas, UAM-Azc., Av. San Pablo 180, Col. Reynosa, México D. F. 02200, Mexico

2. 

San Antonio 64, Col. Las Fuentes, Zapopan, Jalisco, 45070, Mexico

Received  October 2008 Revised  February 2009 Published  September 2009

We present various models in classical mechanics which exhibit 'exotic' orbits. We give an example of a smooth $|\mathbf{r}|$-independent potential
$V$ in dimension three, which exhibits an orbit that spirals as time goes to infinity. This kind of orbits cannot occur for this class of potentials in dimension two [4] or, see below, if ${Cr}=\{\omega\in S^{n-1}:\nabla V(\omega)=0\}$, $n\geq 3$, is totally disconnected. In addition, for each $\mu>2$ we give an example of a potential of the form $V(r,\theta)=O(r^{-\mu})$, in two dimensions, which is not radially symmetric and has a zero-energy orbit that escapes towards infinity in spirals. Zero energy orbits escaping towards infinity in spirals cannot occur for radial potentials with the same rate of decay.
Citation: Jamie Cruz, Miguel Gutiérrez. Spiral motion in classical mechanics. Conference Publications, 2009, 2009 (Special) : 191-197. doi: 10.3934/proc.2009.2009.191
[1]

Henryk Leszczyński, Monika Wrzosek. Newton's method for nonlinear stochastic wave equations driven by one-dimensional Brownian motion. Mathematical Biosciences & Engineering, 2017, 14 (1) : 237-248. doi: 10.3934/mbe.2017015

[2]

Koichi Osaki, Hirotoshi Satoh, Shigetoshi Yazaki. Towards modelling spiral motion of open plane curves. Discrete & Continuous Dynamical Systems - S, 2015, 8 (5) : 1009-1022. doi: 10.3934/dcdss.2015.8.1009

[3]

Anatoli Babin, Alexander Figotin. Newton's law for a trajectory of concentration of solutions to nonlinear Schrodinger equation. Communications on Pure & Applied Analysis, 2014, 13 (5) : 1685-1718. doi: 10.3934/cpaa.2014.13.1685

[4]

Tetsuya Ishiwata. Crystalline motion of spiral-shaped polygonal curves with a tip motion. Discrete & Continuous Dynamical Systems - S, 2014, 7 (1) : 53-62. doi: 10.3934/dcdss.2014.7.53

[5]

Tetsuya Ishiwata. On spiral solutions to generalized crystalline motion with a rotating tip motion. Discrete & Continuous Dynamical Systems - S, 2015, 8 (5) : 881-888. doi: 10.3934/dcdss.2015.8.881

[6]

Renjun Duan, Shuangqian Liu, Tong Yang, Huijiang Zhao. Stability of the nonrelativistic Vlasov-Maxwell-Boltzmann system for angular non-cutoff potentials. Kinetic & Related Models, 2013, 6 (1) : 159-204. doi: 10.3934/krm.2013.6.159

[7]

Zhaohui Huo, Yoshinori Morimoto, Seiji Ukai, Tong Yang. Regularity of solutions for spatially homogeneous Boltzmann equation without angular cutoff. Kinetic & Related Models, 2008, 1 (3) : 453-489. doi: 10.3934/krm.2008.1.453

[8]

Yoshinori Morimoto, Seiji Ukai, Chao-Jiang Xu, Tong Yang. Regularity of solutions to the spatially homogeneous Boltzmann equation without angular cutoff. Discrete & Continuous Dynamical Systems - A, 2009, 24 (1) : 187-212. doi: 10.3934/dcds.2009.24.187

[9]

Lingbing He, Yulong Zhou. High order approximation for the Boltzmann equation without angular cutoff. Kinetic & Related Models, 2018, 11 (3) : 547-596. doi: 10.3934/krm.2018024

[10]

Hideo Ikeda, Koji Kondo, Hisashi Okamoto, Shoji Yotsutani. On the global branches of the solutions to a nonlocal boundary-value problem arising in Oseen's spiral flows. Communications on Pure & Applied Analysis, 2003, 2 (3) : 381-390. doi: 10.3934/cpaa.2003.2.381

[11]

Robert Denk, Leonid Volevich. A new class of parabolic problems connected with Newton's polygon. Conference Publications, 2007, 2007 (Special) : 294-303. doi: 10.3934/proc.2007.2007.294

[12]

Juhi Jang, Ian Tice. Passive scalars, moving boundaries, and Newton's law of cooling. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1383-1413. doi: 10.3934/dcds.2016.36.1383

[13]

R. Baier, M. Dellnitz, M. Hessel-von Molo, S. Sertl, I. G. Kevrekidis. The computation of convex invariant sets via Newton's method. Journal of Computational Dynamics, 2014, 1 (1) : 39-69. doi: 10.3934/jcd.2014.1.39

[14]

Liqun Qi, Zheng yan, Hongxia Yin. Semismooth reformulation and Newton's method for the security region problem of power systems. Journal of Industrial & Management Optimization, 2008, 4 (1) : 143-153. doi: 10.3934/jimo.2008.4.143

[15]

Xavier Blanc, Claude Le Bris, Pierre-Louis Lions. From the Newton equation to the wave equation in some simple cases. Networks & Heterogeneous Media, 2012, 7 (1) : 1-41. doi: 10.3934/nhm.2012.7.1

[16]

Banavara N. Shashikanth. Kirchhoff's equations of motion via a constrained Zakharov system. Journal of Geometric Mechanics, 2016, 8 (4) : 461-485. doi: 10.3934/jgm.2016016

[17]

Letizia Stefanelli, Ugo Locatelli. Kolmogorov's normal form for equations of motion with dissipative effects. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2561-2593. doi: 10.3934/dcdsb.2012.17.2561

[18]

Nicolas Fournier. A new regularization possibility for the Boltzmann equation with soft potentials. Kinetic & Related Models, 2008, 1 (3) : 405-414. doi: 10.3934/krm.2008.1.405

[19]

Dongsheng Yin, Min Tang, Shi Jin. The Gaussian beam method for the wigner equation with discontinuous potentials. Inverse Problems & Imaging, 2013, 7 (3) : 1051-1074. doi: 10.3934/ipi.2013.7.1051

[20]

Yonggang Zhao, Mingxin Wang. An integral equation involving Bessel potentials on half space. Communications on Pure & Applied Analysis, 2015, 14 (2) : 527-548. doi: 10.3934/cpaa.2015.14.527

 Impact Factor: 

Metrics

  • PDF downloads (2)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]