2009, 2009(Special): 44-53. doi: 10.3934/proc.2009.2009.44

Accurate parameter estimation for coupled stochastic dynamics

1. 

Department of Mathematics, University of Houston and Ecole Normale Sup. France, United States

2. 

Department of Mathematics, University of Houston, United States

Received  August 2008 Revised  March 2009 Published  September 2009

We develop and implement an efficient algorithm to estimate the 5 parameters of Heston's model from arbitrary given series of joint observations for the stock price and volatility. We consider the time interval T separating two observations to be unknown and estimate it from the data, thereby estimating 6 parameters with a clear gain in fit accuracy. We compare the maximum likelihood parameter estimates based on an Euler discretization scheme to analogous estimates derived from the more accurate Milstein discretization scheme; we derive explicit conditions under which the two set of estimates are asymptotically equivalent, and we compute the asymptotic distribution of the difference of the two set of estimates. We show that parameter estimates derived from the Euler scheme by constrained optimization of the approximate maximum likelihood are consistent, and we compute their asymptotic variances. Numerically, our estimation algorithms are easy to implement,and require only very moderate amounts of CPU. We have performed extensive simulations which show that for standard range of the process parameters, the empirical variances of our parameter estimates are correctly approximated by their theoretical asymptotic variances.
Citation: Robert Azencott, Yutheeka Gadhyan. Accurate parameter estimation for coupled stochastic dynamics. Conference Publications, 2009, 2009 (Special) : 44-53. doi: 10.3934/proc.2009.2009.44
[1]

Lishang Jiang, Baojun Bian. The regularized implied local volatility equations -A new model to recover the volatility of underlying asset from observed market option price. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 2017-2046. doi: 10.3934/dcdsb.2012.17.2017

[2]

Lorella Fatone, Francesca Mariani, Maria Cristina Recchioni, Francesco Zirilli. Pricing realized variance options using integrated stochastic variance options in the Heston stochastic volatility model. Conference Publications, 2007, 2007 (Special) : 354-363. doi: 10.3934/proc.2007.2007.354

[3]

Kais Hamza, Fima C. Klebaner, Olivia Mah. Volatility in options formulae for general stochastic dynamics. Discrete & Continuous Dynamical Systems - B, 2014, 19 (2) : 435-446. doi: 10.3934/dcdsb.2014.19.435

[4]

Alessandro Corbetta, Adrian Muntean, Kiamars Vafayi. Parameter estimation of social forces in pedestrian dynamics models via a probabilistic method. Mathematical Biosciences & Engineering, 2015, 12 (2) : 337-356. doi: 10.3934/mbe.2015.12.337

[5]

Gianni Gilioli, Sara Pasquali, Fabrizio Ruggeri. Nonlinear functional response parameter estimation in a stochastic predator-prey model. Mathematical Biosciences & Engineering, 2012, 9 (1) : 75-96. doi: 10.3934/mbe.2012.9.75

[6]

Ferenc Hartung. Parameter estimation by quasilinearization in differential equations with state-dependent delays. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1611-1631. doi: 10.3934/dcdsb.2013.18.1611

[7]

Azmy S. Ackleh, Jeremy J. Thibodeaux. Parameter estimation in a structured erythropoiesis model. Mathematical Biosciences & Engineering, 2008, 5 (4) : 601-616. doi: 10.3934/mbe.2008.5.601

[8]

Lixin Wu, Fan Zhang. LIBOR market model with stochastic volatility. Journal of Industrial & Management Optimization, 2006, 2 (2) : 199-227. doi: 10.3934/jimo.2006.2.199

[9]

Blaise Faugeras, Olivier Maury. An advection-diffusion-reaction size-structured fish population dynamics model combined with a statistical parameter estimation procedure: Application to the Indian Ocean skipjack tuna fishery. Mathematical Biosciences & Engineering, 2005, 2 (4) : 719-741. doi: 10.3934/mbe.2005.2.719

[10]

Jianhua Huang, Tianlong Shen, Yuhong Li. Dynamics of stochastic fractional Boussinesq equations. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2051-2067. doi: 10.3934/dcdsb.2015.20.2051

[11]

Shuang Li, Chuong Luong, Francisca Angkola, Yonghong Wu. Optimal asset portfolio with stochastic volatility under the mean-variance utility with state-dependent risk aversion. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1521-1533. doi: 10.3934/jimo.2016.12.1521

[12]

Alex Capaldi, Samuel Behrend, Benjamin Berman, Jason Smith, Justin Wright, Alun L. Lloyd. Parameter estimation and uncertainty quantification for an epidemic model. Mathematical Biosciences & Engineering, 2012, 9 (3) : 553-576. doi: 10.3934/mbe.2012.9.553

[13]

G. Buffoni, S. Pasquali, G. Gilioli. A stochastic model for the dynamics of a stage structured population. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 517-525. doi: 10.3934/dcdsb.2004.4.517

[14]

Yang Shen, Tak Kuen Siu. Consumption-portfolio optimization and filtering in a hidden Markov-modulated asset price model. Journal of Industrial & Management Optimization, 2017, 13 (1) : 23-46. doi: 10.3934/jimo.2016002

[15]

Johnathan M. Bardsley. A theoretical framework for the regularization of Poisson likelihood estimation problems. Inverse Problems & Imaging, 2010, 4 (1) : 11-17. doi: 10.3934/ipi.2010.4.11

[16]

Alfonso Ruiz-Herrera. Chaos in delay differential equations with applications in population dynamics. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1633-1644. doi: 10.3934/dcds.2013.33.1633

[17]

Olivier Bonnefon, Jérôme Coville, Jimmy Garnier, Lionel Roques. Inside dynamics of solutions of integro-differential equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3057-3085. doi: 10.3934/dcdsb.2014.19.3057

[18]

Yu Wu, Xiaopeng Zhao, Mingjun Zhang. Dynamics of stochastic mutation to immunodominance. Mathematical Biosciences & Engineering, 2012, 9 (4) : 937-952. doi: 10.3934/mbe.2012.9.937

[19]

Alex John Quijano, Michele L. Joyner, Edith Seier, Nathaniel Hancock, Michael Largent, Thomas C. Jones. An aggregate stochastic model incorporating individual dynamics for predation movements of anelosimus studiosus. Mathematical Biosciences & Engineering, 2015, 12 (3) : 585-607. doi: 10.3934/mbe.2015.12.585

[20]

Jie Huang, Xiaoping Yang, Yunmei Chen. A fast algorithm for global minimization of maximum likelihood based on ultrasound image segmentation. Inverse Problems & Imaging, 2011, 5 (3) : 645-657. doi: 10.3934/ipi.2011.5.645

 Impact Factor: 

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]