• Previous Article
    On the existence of fixed-sign solutions for a system of generalized right focal problems with deviating arguments
  • PROC Home
  • This Issue
  • Next Article
    Types of solutions and multiplicity results for second order nonlinear boundary value problems
2007, 2007(Special): 1052-1060. doi: 10.3934/proc.2007.2007.1052

Accounting for the effect of internal viscosity in dumbbell models for polymeric fluids and relaxation of DNA

1. 

Department of Engineering Mechanics, Shenyang Institute of Aeronautical Engineering, Shenyan 110136, China

2. 

Mathematical Modelling & Computational Sciences, Wilfrid Laurier University, Waterloo, Ontario N2L 2C5, Canada

Received  September 2006 Revised  April 2007 Published  September 2007

The coarse-graining approach is one of the most important modeling methods in research of long-chain polymers such as DNA molecules. The dumbbell model is a simple but efficient way to describe the behavior of polymers in solutions. In this paper, the dumbbell model with internal viscosity (IV) for concentrated polymeric liquids is analyzed for the steady-state and time-dependent elongational flow and steady-state shear flow. In the elongational flow case, by analyzing the governing ordinary differential equations the contribution of the IV to the stress tensor is discussed for fluids subjected to a sudden elongational jerk. In the shear flow case, the governing stochastic differential equation of the finitely extensible nonlinear elastic dumbbell model is solved numerically. For this case, the extensions of DNA molecules for different shear rates are analyzed, and the comparison with the experimental data is carried out to estimate the contribution of the effect of internal viscosity.
Citation: Xiao-Dong Yang, Roderick V. N. Melnik. Accounting for the effect of internal viscosity in dumbbell models for polymeric fluids and relaxation of DNA. Conference Publications, 2007, 2007 (Special) : 1052-1060. doi: 10.3934/proc.2007.2007.1052
[1]

Vincent Giovangigli, Wen-An Yong. Volume viscosity and internal energy relaxation: Symmetrization and Chapman-Enskog expansion. Kinetic & Related Models, 2015, 8 (1) : 79-116. doi: 10.3934/krm.2015.8.79

[2]

Vincent Giovangigli, Wen-An Yong. Erratum: ``Volume viscosity and internal energy relaxation: Symmetrization and Chapman-Enskog expansion''. Kinetic & Related Models, 2016, 9 (4) : 813-813. doi: 10.3934/krm.2016018

[3]

Nirav Dalal, David Greenhalgh, Xuerong Mao. Mathematical modelling of internal HIV dynamics. Discrete & Continuous Dynamical Systems - B, 2009, 12 (2) : 305-321. doi: 10.3934/dcdsb.2009.12.305

[4]

Conrad Bertrand Tabi, Alidou Mohamadou, Timoleon Crepin Kofane. Soliton-like excitation in a nonlinear model of DNA dynamics with viscosity. Mathematical Biosciences & Engineering, 2008, 5 (1) : 205-216. doi: 10.3934/mbe.2008.5.205

[5]

Youcef Amirat, Kamel Hamdache. Strong solutions to the equations of flow and heat transfer in magnetic fluids with internal rotations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3289-3320. doi: 10.3934/dcds.2013.33.3289

[6]

M. Bulíček, P. Kaplický. Incompressible fluids with shear rate and pressure dependent viscosity: Regularity of steady planar flows. Discrete & Continuous Dynamical Systems - S, 2008, 1 (1) : 41-50. doi: 10.3934/dcdss.2008.1.41

[7]

Nabil Bennenni, Kenza Guenda, Sihem Mesnager. DNA cyclic codes over rings. Advances in Mathematics of Communications, 2017, 11 (1) : 83-98. doi: 10.3934/amc.2017004

[8]

Marina Dolfin, Mirosław Lachowicz. Modeling DNA thermal denaturation at the mesoscopic level. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2469-2482. doi: 10.3934/dcdsb.2014.19.2469

[9]

Bashar Ibrahim. Mathematical analysis and modeling of DNA segregation mechanisms. Mathematical Biosciences & Engineering, 2018, 15 (2) : 429-440. doi: 10.3934/mbe.2018019

[10]

Yunkyong Hyon, José A. Carrillo, Qiang Du, Chun Liu. A maximum entropy principle based closure method for macro-micro models of polymeric materials. Kinetic & Related Models, 2008, 1 (2) : 171-184. doi: 10.3934/krm.2008.1.171

[11]

Constantine M. Dafermos. Hyperbolic balance laws with relaxation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4271-4285. doi: 10.3934/dcds.2016.36.4271

[12]

Peter Constantin. Transport in rotating fluids. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 165-176. doi: 10.3934/dcds.2004.10.165

[13]

Y. Charles Li. Chaos phenotypes discovered in fluids. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1383-1398. doi: 10.3934/dcds.2010.26.1383

[14]

D. Bresch, B. Desjardins, D. Gérard-Varet. Rotating fluids in a cylinder. Discrete & Continuous Dynamical Systems - A, 2004, 11 (1) : 47-82. doi: 10.3934/dcds.2004.11.47

[15]

Paolo Secchi. An alpha model for compressible fluids. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 351-359. doi: 10.3934/dcdss.2010.3.351

[16]

Krzysztof A. Cyran, Marek Kimmel. Interactions of Neanderthals and Modern Humans: What Can Be Inferred from Mitochondrial DNA?. Mathematical Biosciences & Engineering, 2005, 2 (3) : 487-498. doi: 10.3934/mbe.2005.2.487

[17]

Azucena Álvarez, Francisco R. Romero, José M. Romero, Juan F. R. Archilla. Nonsymmetric moving breather collisions in the Peyrard-Bishop DNA model. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 995-1006. doi: 10.3934/dcdss.2011.4.995

[18]

José Raúl Quintero, Juan Carlos Muñoz Grajales. Solitary waves for an internal wave model. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5721-5741. doi: 10.3934/dcds.2016051

[19]

Camille Laurent. Internal control of the Schrödinger equation. Mathematical Control & Related Fields, 2014, 4 (2) : 161-186. doi: 10.3934/mcrf.2014.4.161

[20]

Sebastian Aniţa, Bedreddine Ainseba. Internal eradicability for an epidemiological model with diffusion. Mathematical Biosciences & Engineering, 2005, 2 (3) : 437-443. doi: 10.3934/mbe.2005.2.437

 Impact Factor: 

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]