2007, 2007(Special): 804-813. doi: 10.3934/proc.2007.2007.804

Large time behaviour of solutions of nonlinear ode describing hysteresis

1. 

Department of Mathematics, Faculty of Education, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan

Received  September 2006 Revised  August 2007 Published  September 2007

We consider a nonlinear ordinary differential system which describes hysteresis input-output relations. The main part of this system is governed by subdifferential operator and it is used to present various hysteresis effects.

  In real phenomena, many hysteresis branches are observed. We are interested in verifying our system to express such branches. Our main objective of this talk is to investigate the precise behaviour of orbits of solutions of our system and show some numerical simulations.
Citation: Takanobu Okazaki. Large time behaviour of solutions of nonlinear ode describing hysteresis. Conference Publications, 2007, 2007 (Special) : 804-813. doi: 10.3934/proc.2007.2007.804
[1]

Liviu I. Ignat, Ademir F. Pazoto. Large time behaviour for a nonlocal diffusion - convection equation related with gas dynamics. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3575-3589. doi: 10.3934/dcds.2014.34.3575

[2]

Jianfeng Feng, Mariya Shcherbina, Brunello Tirozzi. Dynamical behaviour of a large complex system. Communications on Pure & Applied Analysis, 2008, 7 (2) : 249-265. doi: 10.3934/cpaa.2008.7.249

[3]

Pavel Krejčí, Jürgen Sprekels. Long time behaviour of a singular phase transition model. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1119-1135. doi: 10.3934/dcds.2006.15.1119

[4]

Geonho Lee, Sangdong Kim, Young-Sam Kwon. Large time behavior for the full compressible magnetohydrodynamic flows. Communications on Pure & Applied Analysis, 2012, 11 (3) : 959-971. doi: 10.3934/cpaa.2012.11.959

[5]

M. Chipot, A. Rougirel. On the asymptotic behaviour of the solution of parabolic problems in cylindrical domains of large size in some directions. Discrete & Continuous Dynamical Systems - B, 2001, 1 (3) : 319-338. doi: 10.3934/dcdsb.2001.1.319

[6]

Rana D. Parshad. Asymptotic behaviour of the Darcy-Boussinesq system at large Darcy-Prandtl number. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1441-1469. doi: 10.3934/dcds.2010.26.1441

[7]

Khalid Latrach, Hatem Megdiche. Time asymptotic behaviour for Rotenberg's model with Maxwell boundary conditions. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 305-321. doi: 10.3934/dcds.2011.29.305

[8]

A. Kh. Khanmamedov. Long-time behaviour of doubly nonlinear parabolic equations. Communications on Pure & Applied Analysis, 2009, 8 (4) : 1373-1400. doi: 10.3934/cpaa.2009.8.1373

[9]

Yuguo Lin, Daqing Jiang. Long-time behaviour of a perturbed SIR model by white noise. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1873-1887. doi: 10.3934/dcdsb.2013.18.1873

[10]

Walter Allegretto, Yanping Lin, Shuqing Ma. Existence and long time behaviour of solutions to obstacle thermistor equations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (3) : 757-780. doi: 10.3934/dcds.2002.8.757

[11]

Lingbing He, Claude Le Bris, Tony Lelièvre. Periodic long-time behaviour for an approximate model of nematic polymers. Kinetic & Related Models, 2012, 5 (2) : 357-382. doi: 10.3934/krm.2012.5.357

[12]

Elena Bonetti, Giovanna Bonfanti, Riccarda Rossi. Long-time behaviour of a thermomechanical model for adhesive contact. Discrete & Continuous Dynamical Systems - S, 2011, 4 (2) : 273-309. doi: 10.3934/dcdss.2011.4.273

[13]

Xavier Bressaud. Expanding interval maps with intermittent behaviour, physical measures and time scales. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 517-546. doi: 10.3934/dcds.2004.11.517

[14]

A. Kh. Khanmamedov. Long-time behaviour of wave equations with nonlinear interior damping. Discrete & Continuous Dynamical Systems - A, 2008, 21 (4) : 1185-1198. doi: 10.3934/dcds.2008.21.1185

[15]

Feimin Huang, Yeping Li. Large time behavior and quasineutral limit of solutions to a bipolar hydrodynamic model with large data and vacuum. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 455-470. doi: 10.3934/dcds.2009.24.455

[16]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[17]

Dongfen Bian, Boling Guo. Global existence and large time behavior of solutions to the electric-magnetohydrodynamic equations. Kinetic & Related Models, 2013, 6 (3) : 481-503. doi: 10.3934/krm.2013.6.481

[18]

Martin Burger, Marco Di Francesco. Large time behavior of nonlocal aggregation models with nonlinear diffusion. Networks & Heterogeneous Media, 2008, 3 (4) : 749-785. doi: 10.3934/nhm.2008.3.749

[19]

Jerry L. Bona, Laihan Luo. Large-time asymptotics of the generalized Benjamin-Ono-Burgers equation. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 15-50. doi: 10.3934/dcdss.2011.4.15

[20]

Jean-François Biasse. Subexponential time relations in the class group of large degree number fields. Advances in Mathematics of Communications, 2014, 8 (4) : 407-425. doi: 10.3934/amc.2014.8.407

 Impact Factor: 

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]