2007, 2007(Special): 704-712. doi: 10.3934/proc.2007.2007.704

Blow up and decay bounds in guasi linear parabolic problems

1. 

Dipartimento di Matematica e Informatica, Viale Merello 92, 09123 Cagliari, Italy, Italy

Received  September 2006 Revised  May 2007 Published  September 2007

Aim of this paper is to investigate a class of quasilinear parabolic problems whose solutions may blow up at some finite time. We establish conditions on data sufficient to preclude blow up and to insure that the solution and its spatial gradient decay exponentially for all $t > 0$.
Citation: Monica Marras, Stella Vernier Piro. Blow up and decay bounds in guasi linear parabolic problems. Conference Publications, 2007, 2007 (Special) : 704-712. doi: 10.3934/proc.2007.2007.704
[1]

Huijiang Zhao. Large time decay estimates of solutions of nonlinear parabolic equations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 69-114. doi: 10.3934/dcds.2002.8.69

[2]

Wenmin Sun, Jiguang Bao. New maximum principles for fully nonlinear ODEs of second order. Discrete & Continuous Dynamical Systems - A, 2007, 19 (4) : 813-823. doi: 10.3934/dcds.2007.19.813

[3]

Tariel Sanikidze, A.F. Tedeev. On the temporal decay estimates for the degenerate parabolic system. Communications on Pure & Applied Analysis, 2013, 12 (4) : 1755-1768. doi: 10.3934/cpaa.2013.12.1755

[4]

Brian D. Ewald, Roger Témam. Maximum principles for the primitive equations of the atmosphere. Discrete & Continuous Dynamical Systems - A, 2001, 7 (2) : 343-362. doi: 10.3934/dcds.2001.7.343

[5]

Lucio Boccardo, Maria Michaela Porzio. Some degenerate parabolic problems: Existence and decay properties. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 617-629. doi: 10.3934/dcdss.2014.7.617

[6]

Francesca Da Lio. Remarks on the strong maximum principle for viscosity solutions to fully nonlinear parabolic equations. Communications on Pure & Applied Analysis, 2004, 3 (3) : 395-415. doi: 10.3934/cpaa.2004.3.395

[7]

H. Merdan, G. Caginalp. Decay of solutions to nonlinear parabolic equations: renormalization and rigorous results. Discrete & Continuous Dynamical Systems - B, 2003, 3 (4) : 565-588. doi: 10.3934/dcdsb.2003.3.565

[8]

Pavol Quittner, Philippe Souplet. A priori estimates of global solutions of superlinear parabolic problems without variational structure. Discrete & Continuous Dynamical Systems - A, 2003, 9 (5) : 1277-1292. doi: 10.3934/dcds.2003.9.1277

[9]

Alexandre Nolasco de Carvalho, Marcos Roberto Teixeira Primo. Spatial homogeneity in parabolic problems with nonlinear boundary conditions . Communications on Pure & Applied Analysis, 2004, 3 (4) : 637-651. doi: 10.3934/cpaa.2004.3.637

[10]

Luis Alvarez, Jesús Ildefonso Díaz. On the retention of the interfaces in some elliptic and parabolic nonlinear problems. Discrete & Continuous Dynamical Systems - A, 2009, 25 (1) : 1-17. doi: 10.3934/dcds.2009.25.1

[11]

Linghai Zhang. Decay estimates with sharp rates of global solutions of nonlinear systems of fluid dynamics equations. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 2181-2200. doi: 10.3934/dcdss.2016091

[12]

Vitali Liskevich, Igor I. Skrypnik, Zeev Sobol. Estimates of solutions for the parabolic $p$-Laplacian equation with measure via parabolic nonlinear potentials. Communications on Pure & Applied Analysis, 2013, 12 (4) : 1731-1744. doi: 10.3934/cpaa.2013.12.1731

[13]

Tatiana Filippova. Differential equations of ellipsoidal state estimates in nonlinear control problems under uncertainty. Conference Publications, 2011, 2011 (Special) : 410-419. doi: 10.3934/proc.2011.2011.410

[14]

A. Domoshnitsky. About maximum principles for one of the components of solution vector and stability for systems of linear delay differential equations. Conference Publications, 2011, 2011 (Special) : 373-380. doi: 10.3934/proc.2011.2011.373

[15]

Cristian Enache. Maximum and minimum principles for a class of Monge-Ampère equations in the plane, with applications to surfaces of constant Gauss curvature. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1347-1359. doi: 10.3934/cpaa.2014.13.1347

[16]

Judith Vancostenoble. Improved Hardy-Poincaré inequalities and sharp Carleman estimates for degenerate/singular parabolic problems. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 761-790. doi: 10.3934/dcdss.2011.4.761

[17]

Hannes Meinlschmidt, Joachim Rehberg. Hölder-estimates for non-autonomous parabolic problems with rough data. Evolution Equations & Control Theory, 2016, 5 (1) : 147-184. doi: 10.3934/eect.2016.5.147

[18]

Mark I. Vishik, Sergey Zelik. Attractors for the nonlinear elliptic boundary value problems and their parabolic singular limit. Communications on Pure & Applied Analysis, 2014, 13 (5) : 2059-2093. doi: 10.3934/cpaa.2014.13.2059

[19]

Qi S. Zhang. Nonlinear parabolic problems on manifolds, and a nonexistence result for the noncompact Yamabe problem. Electronic Research Announcements, 1997, 3: 45-51.

[20]

J.-P. Raymond. Nonlinear boundary control of semilinear parabolic problems with pointwise state constraints. Discrete & Continuous Dynamical Systems - A, 1997, 3 (3) : 341-370. doi: 10.3934/dcds.1997.3.341

 Impact Factor: 

Metrics

  • PDF downloads (1)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]