2007, 2007(Special): 655-666. doi: 10.3934/proc.2007.2007.655

Hamiltonian dynamics of atom-diatomic molecule complexes and collisions

1. 

University of Southern California, Department of Mathematics, KAP 108, 3620 Vermont Avenue, Los Angeles, CA 90089-2532, United States

Received  September 2006 Revised  February 2007 Published  September 2007

For a polyatomic molecule at zero total angular momentum, this paper shows that an internal motion with nonzero internal angular momentum within a (generalized) Eckart frame will produce a net rotation of the (generalized) Eckart frame in the center-of-mass frame. For a polyatomic molecule at nonzero total angular momentum, an internal motion within a generalized Eckart frame with nonzero orbital angular momentum will produce a net rotation of the generalized Eckart frame in the center-of-mass frame. Specifically, at zero total angular momentum, an internal rotation of a diatomic molecule within an atom-diatomic molecule system has nonzero internal rotational angular momentum and produces a counter-rotary net rotation of the orientation of the system (and of its generalized Eckart frame) in the center-of mass frame. Beyond a net overall rotation of an atom-diatomic molecule complex in the center-of-mass frame, a net rotation of the scattering angle of an atom colliding with a rotating diatomic molecule is obtained. A rotation in the recoil angle of an atom departing from a dissociating triatomic molecule has been observed.
Citation: F. J. Lin. Hamiltonian dynamics of atom-diatomic molecule complexes and collisions. Conference Publications, 2007, 2007 (Special) : 655-666. doi: 10.3934/proc.2007.2007.655
[1]

Edward Belbruno. Random walk in the three-body problem and applications. Discrete & Continuous Dynamical Systems - S, 2008, 1 (4) : 519-540. doi: 10.3934/dcdss.2008.1.519

[2]

Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463

[3]

Mitsuru Shibayama. Non-integrability of the collinear three-body problem. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 299-312. doi: 10.3934/dcds.2011.30.299

[4]

Richard Moeckel. A proof of Saari's conjecture for the three-body problem in $\R^d$. Discrete & Continuous Dynamical Systems - S, 2008, 1 (4) : 631-646. doi: 10.3934/dcdss.2008.1.631

[5]

Jungsoo Kang. Some remarks on symmetric periodic orbits in the restricted three-body problem. Discrete & Continuous Dynamical Systems - A, 2014, 34 (12) : 5229-5245. doi: 10.3934/dcds.2014.34.5229

[6]

Hiroshi Ozaki, Hiroshi Fukuda, Toshiaki Fujiwara. Determination of motion from orbit in the three-body problem. Conference Publications, 2011, 2011 (Special) : 1158-1166. doi: 10.3934/proc.2011.2011.1158

[7]

Kuo-Chang Chen. On Chenciner-Montgomery's orbit in the three-body problem. Discrete & Continuous Dynamical Systems - A, 2001, 7 (1) : 85-90. doi: 10.3934/dcds.2001.7.85

[8]

Richard Moeckel. A topological existence proof for the Schubart orbits in the collinear three-body problem. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 609-620. doi: 10.3934/dcdsb.2008.10.609

[9]

Chjan C. Lim, Joseph Nebus, Syed M. Assad. Monte-Carlo and polyhedron-based simulations I: extremal states of the logarithmic N-body problem on a sphere. Discrete & Continuous Dynamical Systems - B, 2003, 3 (3) : 313-342. doi: 10.3934/dcdsb.2003.3.313

[10]

Nai-Chia Chen. Symmetric periodic orbits in three sub-problems of the $N$-body problem. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1523-1548. doi: 10.3934/dcdsb.2014.19.1523

[11]

Abimael Bengochea, Manuel Falconi, Ernesto Pérez-Chavela. Horseshoe periodic orbits with one symmetry in the general planar three-body problem. Discrete & Continuous Dynamical Systems - A, 2013, 33 (3) : 987-1008. doi: 10.3934/dcds.2013.33.987

[12]

Qinglong Zhou, Yongchao Zhang. Analytic results for the linear stability of the equilibrium point in Robe's restricted elliptic three-body problem. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1763-1787. doi: 10.3934/dcds.2017074

[13]

Samuel R. Kaplan, Mark Levi, Richard Montgomery. Making the moon reverse its orbit, or, stuttering in the planar three-body problem. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 569-595. doi: 10.3934/dcdsb.2008.10.569

[14]

Regina Martínez, Carles Simó. On the stability of the Lagrangian homographic solutions in a curved three-body problem on $\mathbb{S}^2$. Discrete & Continuous Dynamical Systems - A, 2013, 33 (3) : 1157-1175. doi: 10.3934/dcds.2013.33.1157

[15]

Xiaojun Chang, Tiancheng Ouyang, Duokui Yan. Linear stability of the criss-cross orbit in the equal-mass three-body problem. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 5971-5991. doi: 10.3934/dcds.2016062

[16]

Rongchang Liu, Jiangyuan Li, Duokui Yan. New periodic orbits in the planar equal-mass three-body problem. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2187-2206. doi: 10.3934/dcds.2018090

[17]

Tiancheng Ouyang, Duokui Yan. Variational properties and linear stabilities of spatial isosceles orbits in the equal-mass three-body problem. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3989-4018. doi: 10.3934/dcds.2017169

[18]

Davide L. Ferrario, Alessandro Portaluri. Dynamics of the the dihedral four-body problem. Discrete & Continuous Dynamical Systems - S, 2013, 6 (4) : 925-974. doi: 10.3934/dcdss.2013.6.925

[19]

Eduardo S. G. Leandro. On the Dziobek configurations of the restricted $(N+1)$-body problem with equal masses. Discrete & Continuous Dynamical Systems - S, 2008, 1 (4) : 589-595. doi: 10.3934/dcdss.2008.1.589

[20]

Marshall Hampton, Anders Nedergaard Jensen. Finiteness of relative equilibria in the planar generalized $N$-body problem with fixed subconfigurations. Journal of Geometric Mechanics, 2015, 7 (1) : 35-42. doi: 10.3934/jgm.2015.7.35

 Impact Factor: 

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]