`a`

Theoretical optimization of finite difference schemes

Pages: 286 - 293, Issue Special, September 2007

 Abstract        Full Text (189.2K)              

Claire david@lmm.jussieu.fr David - Université Pierre et Marie Curie-Paris 6, Institut Jean Le Rond d'Alembert, UMR CNRS 71900, Boîte courrier $n^0$ 162, 4 place Jussieu, 75252 Paris, cedex 05. France, France (email)
Pierre Sagaut - Université Pierre et Marie Curie-Paris 6, Institut Jean Le Rond d'Alembert, UMR CNRS 71900, Boîte courrier $n^0$ 162, 4 place Jussieu, 75252 Paris, cedex 05. France, France (email)

Abstract: The aim of this work is to develop general optimization methods for linear finite difference schemes used to approximate linear differential equations, on the basis of a matrix equation, which enables to determine the optimal value of a parameter for a given scheme.

Keywords:  Linear finite difference schemes, Sylvester equation.
Mathematics Subject Classification:  65.

Received: September 2006;      Revised: March 2007;      Published: September 2007.