`a`

Relaxation approximation of the Kerr model for the impedance initial-boundary value problem

Pages: 212 - 220, Issue Special, September 2007

 Abstract        Full Text (192.4K)              

Gilles Carbou - MAB, UMR 5466, CNRS, Université Bordeaux 1, 351, cours de la Libération, 33405 Talence cedex, France (email)
Bernard Hanouzet - Mathématiques Appliquées de Bordeaux, UMR 5466, CNRS, Université Bordeaux 1, 351, cours de la Libération, 33405 Talence cedex, France (email)

Abstract: The Kerr-Debye model is a relaxation of the nonlinear Kerr model in which the relaxation coefficient is a finite response time of the nonlinear material. We establish the convergence of the Kerr-Debye model to the Kerr model when this relaxation coefficient tends to zero.

Keywords:  Nonlinear Maxwell Equation, Relaxation.
Mathematics Subject Classification:  35L50, 35Q60.

Received: September 2006;      Revised: January 2007;      Published: September 2007.