• Previous Article
    Second order estimates for boundary blow-up solutions of elliptic equations
  • PROC Home
  • This Issue
  • Next Article
    New evolution equations for non-linear water waves in general bathymetry with application to steady travelling solutions in constant, but arbitrary, depth
2007, 2007(Special): 64-74. doi: 10.3934/proc.2007.2007.64

Computation of heteroclinic orbits between normally hyperbolic invariant 3-spheres foliated by 2-dimensional invariant Tori in Hill's problem

1. 

Deimos Space S.L., Ronda de Poniente 19, Ed. Fiteni VI, 28760 Tres Cantos (Madrid), Spain

2. 

IEEC & Departament de Matemàtica Aplicada I, Universitat Politècnica de Catalunya, Av Diagonal 647, ETSEIB, 08028 Barcelona, Spain

Received  September 2006 Revised  January 2007 Published  September 2007

This paper addresses a methodology to compute homoclinic and heteroclinic orbits between hyperbolic invariant tori of Hamiltonian systems. To illustrate the procedure, we focus the presentation on an aspect of libration point mission design, where zero cost transfer trajectories (heteroclinic orbits) are of special relevance.
Citation: Lorenzo Arona, Josep J. Masdemont. Computation of heteroclinic orbits between normally hyperbolic invariant 3-spheres foliated by 2-dimensional invariant Tori in Hill's problem. Conference Publications, 2007, 2007 (Special) : 64-74. doi: 10.3934/proc.2007.2007.64
[1]

Christopher K. R. T. Jones, Siu-Kei Tin. Generalized exchange lemmas and orbits heteroclinic to invariant manifolds. Discrete & Continuous Dynamical Systems - S, 2009, 2 (4) : 967-1023. doi: 10.3934/dcdss.2009.2.967

[2]

Fuzhong Cong, Yong Li. Invariant hyperbolic tori for Hamiltonian systems with degeneracy. Discrete & Continuous Dynamical Systems - A, 1997, 3 (3) : 371-382. doi: 10.3934/dcds.1997.3.371

[3]

Pablo Aguirre, Bernd Krauskopf, Hinke M. Osinga. Global invariant manifolds near a Shilnikov homoclinic bifurcation. Journal of Computational Dynamics, 2014, 1 (1) : 1-38. doi: 10.3934/jcd.2014.1.1

[4]

Tifei Qian, Zhihong Xia. Heteroclinic orbits and chaotic invariant sets for monotone twist maps. Discrete & Continuous Dynamical Systems - A, 2003, 9 (1) : 69-95. doi: 10.3934/dcds.2003.9.69

[5]

Henk Broer, Aaron Hagen, Gert Vegter. Numerical approximation of normally hyperbolic invariant manifolds. Conference Publications, 2003, 2003 (Special) : 133-140. doi: 10.3934/proc.2003.2003.133

[6]

Gemma Huguet, Rafael de la Llave, Yannick Sire. Computation of whiskered invariant tori and their associated manifolds: New fast algorithms. Discrete & Continuous Dynamical Systems - A, 2012, 32 (4) : 1309-1353. doi: 10.3934/dcds.2012.32.1309

[7]

V. Afraimovich, T.R. Young. Multipliers of homoclinic orbits on surfaces and characteristics of associated invariant sets. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 691-704. doi: 10.3934/dcds.2000.6.691

[8]

Maciej J. Capiński, Piotr Zgliczyński. Cone conditions and covering relations for topologically normally hyperbolic invariant manifolds. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 641-670. doi: 10.3934/dcds.2011.30.641

[9]

Amadeu Delshams, Marian Gidea, Pablo Roldán. Transition map and shadowing lemma for normally hyperbolic invariant manifolds. Discrete & Continuous Dynamical Systems - A, 2013, 33 (3) : 1089-1112. doi: 10.3934/dcds.2013.33.1089

[10]

Rovella Alvaro, Vilamajó Francesc, Romero Neptalí. Invariant manifolds for delay endomorphisms. Discrete & Continuous Dynamical Systems - A, 2001, 7 (1) : 35-50. doi: 10.3934/dcds.2001.7.35

[11]

Tingting Zhang, Àngel Jorba, Jianguo Si. Weakly hyperbolic invariant tori for two dimensional quasiperiodically forced maps in a degenerate case. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6599-6622. doi: 10.3934/dcds.2016086

[12]

Fei Liu, Jaume Llibre, Xiang Zhang. Heteroclinic orbits for a class of Hamiltonian systems on Riemannian manifolds. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 1097-1111. doi: 10.3934/dcds.2011.29.1097

[13]

Hsuan-Wen Su. Finding invariant tori with Poincare's map. Communications on Pure & Applied Analysis, 2008, 7 (2) : 433-443. doi: 10.3934/cpaa.2008.7.433

[14]

Ugo Locatelli, Antonio Giorgilli. Invariant tori in the Sun--Jupiter--Saturn system. Discrete & Continuous Dynamical Systems - B, 2007, 7 (2) : 377-398. doi: 10.3934/dcdsb.2007.7.377

[15]

Hans Koch. On the renormalization of Hamiltonian flows, and critical invariant tori. Discrete & Continuous Dynamical Systems - A, 2002, 8 (3) : 633-646. doi: 10.3934/dcds.2002.8.633

[16]

Xiaocai Wang. Non-floquet invariant tori in reversible systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3439-3457. doi: 10.3934/dcds.2018147

[17]

Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233

[18]

Daniel Wilczak. Abundance of heteroclinic and homoclinic orbits for the hyperchaotic Rössler system. Discrete & Continuous Dynamical Systems - B, 2009, 11 (4) : 1039-1055. doi: 10.3934/dcdsb.2009.11.1039

[19]

Inmaculada Baldomá, Ernest Fontich, Pau Martín. Gevrey estimates for one dimensional parabolic invariant manifolds of non-hyperbolic fixed points. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4159-4190. doi: 10.3934/dcds.2017177

[20]

Federico Rodriguez Hertz, María Alejandra Rodriguez Hertz, Raúl Ures. Tori with hyperbolic dynamics in 3-manifolds. Journal of Modern Dynamics, 2011, 5 (1) : 185-202. doi: 10.3934/jmd.2011.5.185

 Impact Factor: 

Metrics

  • PDF downloads (2)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]