2003, 2003(Special): 610-617. doi: 10.3934/proc.2003.2003.610

Dynamics of torque-speed profiles for electric vehicles and nonlinear models based on differential-algebraic equations

1. 

University of Southern Denmark, MCI, Faculty of Science and Engineering, Sonderborg, DK-6400, Denmark, Denmark

2. 

Sauer-Danfoss A/S, Nordborg, Denmark

Received  September 2002 Revised  March 2003 Published  April 2003

The so-called $\mu - \lambda$ curves, where $\lambda$ is the slip ratio and $\mu$ is the normalised traction force or the friction index, are nonlinear functions of the velocity of the vehicle and the wheel rotational velocity. Despite their predominant use in the literature, linear approximations of such curves may fail to predict correctly key characteristics of vehicle performance efficiency such as torque-speed profiles. Although attempts to model these characteristics in the context of slip phenomena have been made before, to our best knowledge a general model with respect to the vehicle velocity, the wheel rotating velocity, the slip ratio, the traction force, and the torque, has never been formulated and solved as a coupled nonlinear problem based on a system of differential-algebraic equations arising naturally in this context. In this paper, such a model is formulated, solved numerically, and some results of numerical simulation of driving an electric vehicle on different surface conditions are presented.
Citation: Roderick V.N. Melnik, Ningning Song, Per Sandholdt. Dynamics of torque-speed profiles for electric vehicles and nonlinear models based on differential-algebraic equations. Conference Publications, 2003, 2003 (Special) : 610-617. doi: 10.3934/proc.2003.2003.610
[1]

Vu Hoang Linh, Volker Mehrmann. Spectral analysis for linear differential-algebraic equations. Conference Publications, 2011, 2011 (Special) : 991-1000. doi: 10.3934/proc.2011.2011.991

[2]

Jason R. Scott, Stephen Campbell. Auxiliary signal design for failure detection in differential-algebraic equations. Numerical Algebra, Control & Optimization, 2014, 4 (2) : 151-179. doi: 10.3934/naco.2014.4.151

[3]

Sergiy Zhuk. Inverse problems for linear ill-posed differential-algebraic equations with uncertain parameters. Conference Publications, 2011, 2011 (Special) : 1467-1476. doi: 10.3934/proc.2011.2011.1467

[4]

Anna Marciniak-Czochra, Andro Mikelić. A nonlinear effective slip interface law for transport phenomena between a fracture flow and a porous medium. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : 1065-1077. doi: 10.3934/dcdss.2014.7.1065

[5]

Heikki Haario, Leonid Kalachev, Marko Laine. Reduction and identification of dynamic models. Simple example: Generic receptor model. Discrete & Continuous Dynamical Systems - B, 2013, 18 (2) : 417-435. doi: 10.3934/dcdsb.2013.18.417

[6]

Jaume Llibre, Claudia Valls. Algebraic limit cycles for quadratic polynomial differential systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-11. doi: 10.3934/dcdsb.2018070

[7]

Claudio Giorgi. Phase-field models for transition phenomena in materials with hysteresis. Discrete & Continuous Dynamical Systems - S, 2015, 8 (4) : 693-722. doi: 10.3934/dcdss.2015.8.693

[8]

Aaron W. Brown. Nonexpanding attractors: Conjugacy to algebraic models and classification in 3-manifolds. Journal of Modern Dynamics, 2010, 4 (3) : 517-548. doi: 10.3934/jmd.2010.4.517

[9]

Jędrzej Śniatycki. Integral curves of derivations on locally semi-algebraic differential spaces. Conference Publications, 2003, 2003 (Special) : 827-833. doi: 10.3934/proc.2003.2003.827

[10]

James M. Hyman, Jia Li. Differential susceptibility and infectivity epidemic models. Mathematical Biosciences & Engineering, 2006, 3 (1) : 89-100. doi: 10.3934/mbe.2006.3.89

[11]

J. M. Cushing. Nonlinear semelparous Leslie models. Mathematical Biosciences & Engineering, 2006, 3 (1) : 17-36. doi: 10.3934/mbe.2006.3.17

[12]

Jan Sieber. Finding periodic orbits in state-dependent delay differential equations as roots of algebraic equations. Discrete & Continuous Dynamical Systems - A, 2012, 32 (8) : 2607-2651. doi: 10.3934/dcds.2012.32.2607

[13]

Hermen Jan Hupkes, Emmanuelle Augeraud-Véron. Well-posedness of initial value problems for functional differential and algebraic equations of mixed type. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 737-765. doi: 10.3934/dcds.2011.30.737

[14]

Zhiqing Liu, Zhong Bo Fang. Blow-up phenomena for a nonlocal quasilinear parabolic equation with time-dependent coefficients under nonlinear boundary flux. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3619-3635. doi: 10.3934/dcdsb.2016113

[15]

Michael E. Filippakis, Donal O'Regan, Nikolaos S. Papageorgiou. Positive solutions and bifurcation phenomena for nonlinear elliptic equations of logistic type: The superdiffusive case. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1507-1527. doi: 10.3934/cpaa.2010.9.1507

[16]

Masatoshi Shiino, Keiji Okumura. Control of attractors in nonlinear dynamical systems using external noise: Effects of noise on synchronization phenomena. Conference Publications, 2013, 2013 (special) : 685-694. doi: 10.3934/proc.2013.2013.685

[17]

Monica Marras, Stella Vernier-Piro, Giuseppe Viglialoro. Blow-up phenomena for nonlinear pseudo-parabolic equations with gradient term. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2291-2300. doi: 10.3934/dcdsb.2017096

[18]

Wendi Wang. Epidemic models with nonlinear infection forces. Mathematical Biosciences & Engineering, 2006, 3 (1) : 267-279. doi: 10.3934/mbe.2006.3.267

[19]

Dan Stanescu, Benito Chen-Charpentier. Random coefficient differential equation models for Monod kinetics. Conference Publications, 2009, 2009 (Special) : 719-728. doi: 10.3934/proc.2009.2009.719

[20]

James M. Hyman, Jia Li. Epidemic models with differential susceptibility and staged progression and their dynamics. Mathematical Biosciences & Engineering, 2009, 6 (2) : 321-332. doi: 10.3934/mbe.2009.6.321

 Impact Factor: 

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (0)

[Back to Top]