
Previous Article
An averaging method for the Helmholtz equation
 PROC Home
 This Issue

Next Article
On solutions to stochastic differential inclusions
Dynamics of torquespeed profiles for electric vehicles and nonlinear models based on differentialalgebraic equations
1.  University of Southern Denmark, MCI, Faculty of Science and Engineering, Sonderborg, DK6400, Denmark, Denmark 
2.  SauerDanfoss A/S, Nordborg, Denmark 
[1] 
Vu Hoang Linh, Volker Mehrmann. Spectral analysis for linear differentialalgebraic equations. Conference Publications, 2011, 2011 (Special) : 9911000. doi: 10.3934/proc.2011.2011.991 
[2] 
Jason R. Scott, Stephen Campbell. Auxiliary signal design for failure detection in differentialalgebraic equations. Numerical Algebra, Control & Optimization, 2014, 4 (2) : 151179. doi: 10.3934/naco.2014.4.151 
[3] 
Sergiy Zhuk. Inverse problems for linear illposed differentialalgebraic equations with uncertain parameters. Conference Publications, 2011, 2011 (Special) : 14671476. doi: 10.3934/proc.2011.2011.1467 
[4] 
Anna MarciniakCzochra, Andro Mikelić. A nonlinear effective slip interface law for transport phenomena between a fracture flow and a porous medium. Discrete & Continuous Dynamical Systems  S, 2014, 7 (5) : 10651077. doi: 10.3934/dcdss.2014.7.1065 
[5] 
Heikki Haario, Leonid Kalachev, Marko Laine. Reduction and identification of dynamic models. Simple example: Generic receptor model. Discrete & Continuous Dynamical Systems  B, 2013, 18 (2) : 417435. doi: 10.3934/dcdsb.2013.18.417 
[6] 
Jaume Llibre, Claudia Valls. Algebraic limit cycles for quadratic polynomial differential systems. Discrete & Continuous Dynamical Systems  B, 2018, 23 (6) : 24752485. doi: 10.3934/dcdsb.2018070 
[7] 
Claudio Giorgi. Phasefield models for transition phenomena in materials with hysteresis. Discrete & Continuous Dynamical Systems  S, 2015, 8 (4) : 693722. doi: 10.3934/dcdss.2015.8.693 
[8] 
Aaron W. Brown. Nonexpanding attractors: Conjugacy to algebraic models and classification in 3manifolds. Journal of Modern Dynamics, 2010, 4 (3) : 517548. doi: 10.3934/jmd.2010.4.517 
[9] 
Jędrzej Śniatycki. Integral curves of derivations on locally semialgebraic differential spaces. Conference Publications, 2003, 2003 (Special) : 827833. doi: 10.3934/proc.2003.2003.827 
[10] 
James M. Hyman, Jia Li. Differential susceptibility and infectivity epidemic models. Mathematical Biosciences & Engineering, 2006, 3 (1) : 89100. doi: 10.3934/mbe.2006.3.89 
[11] 
J. M. Cushing. Nonlinear semelparous Leslie models. Mathematical Biosciences & Engineering, 2006, 3 (1) : 1736. doi: 10.3934/mbe.2006.3.17 
[12] 
Zhiqing Liu, Zhong Bo Fang. Blowup phenomena for a nonlocal quasilinear parabolic equation with timedependent coefficients under nonlinear boundary flux. Discrete & Continuous Dynamical Systems  B, 2016, 21 (10) : 36193635. doi: 10.3934/dcdsb.2016113 
[13] 
Michael E. Filippakis, Donal O'Regan, Nikolaos S. Papageorgiou. Positive solutions and bifurcation phenomena for nonlinear elliptic equations of logistic type: The superdiffusive case. Communications on Pure & Applied Analysis, 2010, 9 (6) : 15071527. doi: 10.3934/cpaa.2010.9.1507 
[14] 
Masatoshi Shiino, Keiji Okumura. Control of attractors in nonlinear dynamical systems using external noise: Effects of noise on synchronization phenomena. Conference Publications, 2013, 2013 (special) : 685694. doi: 10.3934/proc.2013.2013.685 
[15] 
Monica Marras, Stella VernierPiro, Giuseppe Viglialoro. Blowup phenomena for nonlinear pseudoparabolic equations with gradient term. Discrete & Continuous Dynamical Systems  B, 2017, 22 (6) : 22912300. doi: 10.3934/dcdsb.2017096 
[16] 
Jan Sieber. Finding periodic orbits in statedependent delay differential equations as roots of algebraic equations. Discrete & Continuous Dynamical Systems  A, 2012, 32 (8) : 26072651. doi: 10.3934/dcds.2012.32.2607 
[17] 
Hermen Jan Hupkes, Emmanuelle AugeraudVéron. Wellposedness of initial value problems for functional differential and algebraic equations of mixed type. Discrete & Continuous Dynamical Systems  A, 2011, 30 (3) : 737765. doi: 10.3934/dcds.2011.30.737 
[18] 
Wendi Wang. Epidemic models with nonlinear infection forces. Mathematical Biosciences & Engineering, 2006, 3 (1) : 267279. doi: 10.3934/mbe.2006.3.267 
[19] 
Dan Stanescu, Benito ChenCharpentier. Random coefficient differential equation models for Monod kinetics. Conference Publications, 2009, 2009 (Special) : 719728. doi: 10.3934/proc.2009.2009.719 
[20] 
James M. Hyman, Jia Li. Epidemic models with differential susceptibility and staged progression and their dynamics. Mathematical Biosciences & Engineering, 2009, 6 (2) : 321332. doi: 10.3934/mbe.2009.6.321 
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]