2003, 2003(Special): 482-491. doi: 10.3934/proc.2003.2003.482

Application of weak turbulence theory to FPU model

1. 

Department of Mathematical Sciences, Rensselaer Polytechnic Institute, 301 Amos Eaton Hall, 110 8th Street, Troy, NY 12180, United States, United States

Received  September 2002 Revised  April 2003 Published  April 2003

The foundations of weak turbulence theory is explored through its application to the (alpha) Fermi-Pasta-Ulam (FPU) model, a simple weakly nonlinear dispersive system. A direct application of the standard kinetic equations would miss interesting dynamics of the energy transfer process starting from a large-scale excitation. This failure is traced to an enforcement of the exact resonance condition, whereas mathematically the resonance should be broadened due to the energy transfer happening on large but finite time scales. By allowing for the broadened resonance, a modified three-wave kinetic equation is derived for the FPU model. This kinetic equation produces some correct scaling predictions about the statistical dynamics of the FPU model, but does not model accurately the detailed evolution of the energy spectrum. The reason for the failure seems not to be one of the previously clarified reasons for breakdown in the weak turbulence theory.
Citation: Peter R. Kramer, Joseph A. Biello, Yuri Lvov. Application of weak turbulence theory to FPU model. Conference Publications, 2003, 2003 (Special) : 482-491. doi: 10.3934/proc.2003.2003.482
[1]

Simone Paleari, Tiziano Penati. Equipartition times in a Fermi-Pasta-Ulam system. Conference Publications, 2005, 2005 (Special) : 710-719. doi: 10.3934/proc.2005.2005.710

[2]

Alexander Pankov, Vassilis M. Rothos. Traveling waves in Fermi-Pasta-Ulam lattices with saturable nonlinearities. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 835-849. doi: 10.3934/dcds.2011.30.835

[3]

Antonio Giorgilli, Simone Paleari, Tiziano Penati. Local chaotic behaviour in the Fermi-Pasta-Ulam system . Discrete & Continuous Dynamical Systems - B, 2005, 5 (4) : 991-1004. doi: 10.3934/dcdsb.2005.5.991

[4]

Joachim Naumann, Jörg Wolf. On Prandtl's turbulence model: Existence of weak solutions to the equations of stationary turbulent pipe-flow. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1371-1390. doi: 10.3934/dcdss.2013.6.1371

[5]

Jacopo De Simoi. Stability and instability results in a model of Fermi acceleration. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 719-750. doi: 10.3934/dcds.2009.25.719

[6]

W. Layton, R. Lewandowski. On a well-posed turbulence model. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 111-128. doi: 10.3934/dcdsb.2006.6.111

[7]

Alexey Cheskidov, Susan Friedlander, Nataša Pavlović. An inviscid dyadic model of turbulence: The global attractor. Discrete & Continuous Dynamical Systems - A, 2010, 26 (3) : 781-794. doi: 10.3934/dcds.2010.26.781

[8]

Natalia Ptitsyna, Stephen P. Shipman. A lattice model for resonance in open periodic waveguides. Discrete & Continuous Dynamical Systems - S, 2012, 5 (5) : 989-1020. doi: 10.3934/dcdss.2012.5.989

[9]

T. Gallouët, J.-C. Latché. Compactness of discrete approximate solutions to parabolic PDEs - Application to a turbulence model. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2371-2391. doi: 10.3934/cpaa.2012.11.2371

[10]

François Baccelli, Augustin Chaintreau, Danny De Vleeschauwer, David R. McDonald. HTTP turbulence. Networks & Heterogeneous Media, 2006, 1 (1) : 1-40. doi: 10.3934/nhm.2006.1.1

[11]

Luca Bisconti, Davide Catania. Global well-posedness of the two-dimensional horizontally filtered simplified Bardina turbulence model on a strip-like region. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1861-1881. doi: 10.3934/cpaa.2017090

[12]

Eduard Feireisl. On weak solutions to a diffuse interface model of a binary mixture of compressible fluids. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 173-183. doi: 10.3934/dcdss.2016.9.173

[13]

Carlota M. Cuesta, Sabine Hittmeir, Christian Schmeiser. Weak shocks of a BGK kinetic model for isentropic gas dynamics. Kinetic & Related Models, 2010, 3 (2) : 255-279. doi: 10.3934/krm.2010.3.255

[14]

Yongli Cai, Malay Banerjee, Yun Kang, Weiming Wang. Spatiotemporal complexity in a predator--prey model with weak Allee effects. Mathematical Biosciences & Engineering, 2014, 11 (6) : 1247-1274. doi: 10.3934/mbe.2014.11.1247

[15]

Kazuhiro Kurata, Kotaro Morimoto. Existence of multiple spike stationary patterns in a chemotaxis model with weak saturation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 139-164. doi: 10.3934/dcds.2011.31.139

[16]

Eric Falcon. Laboratory experiments on wave turbulence. Discrete & Continuous Dynamical Systems - B, 2010, 13 (4) : 819-840. doi: 10.3934/dcdsb.2010.13.819

[17]

Christopher Bose, Rua Murray. The exact rate of approximation in Ulam's method. Discrete & Continuous Dynamical Systems - A, 2001, 7 (1) : 219-235. doi: 10.3934/dcds.2001.7.219

[18]

Gary Froyland. On Ulam approximation of the isolated spectrum and eigenfunctions of hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2007, 17 (3) : 671-689. doi: 10.3934/dcds.2007.17.671

[19]

Leif Arkeryd. A kinetic equation for spin polarized Fermi systems. Kinetic & Related Models, 2014, 7 (1) : 1-8. doi: 10.3934/krm.2014.7.1

[20]

Gisèle Ruiz Goldstein, Jerome A. Goldstein, Naima Naheed. A convexified energy functional for the Fermi-Amaldi correction. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 41-65. doi: 10.3934/dcds.2010.28.41

 Impact Factor: 

Metrics

  • PDF downloads (1)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]