• Previous Article
    Transfer function approach to output specification in certain linear distributed parameter systems
  • PROC Home
  • This Issue
  • Next Article
    Asymptotic stability of stationary waves for two-dimensional viscous conservation laws in half plane
2003, 2003(Special): 459-468. doi: 10.3934/proc.2003.2003.459

Some recent findings concerning unsteady dipolar fluid flows

1. 

Naval Research Laboratory, Code 7181, Stennis Space Center, MS 39529, United States

2. 

Dept. of Mathematics, University of New Orleans, New Orleans, LA 70148, United States

Received  September 2002 Published  April 2003

Stokes' second problem for dipolar fluids is solved and analyzed under boundary conditions (BC)s involving the usual no-slip condition in conjunction with the specification of the vorticity. A comparison of results obtained with those given in other work where a different set of BCs was used is presented. In addition, special/limiting cases of the solution, including those which correspond to other fluid models, are examined and analytical and numerical results are given.
Citation: P. M. Jordan, P. Puri. Some recent findings concerning unsteady dipolar fluid flows. Conference Publications, 2003, 2003 (Special) : 459-468. doi: 10.3934/proc.2003.2003.459
[1]

Chang-Yeol Jung, Alex Mahalov. Wave propagation in random waveguides. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 147-159. doi: 10.3934/dcds.2010.28.147

[2]

Shangbing Ai, Wenzhang Huang, Zhi-An Wang. Reaction, diffusion and chemotaxis in wave propagation. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 1-21. doi: 10.3934/dcdsb.2015.20.1

[3]

D. G. Aronson, N. V. Mantzaris, Hans Othmer. Wave propagation and blocking in inhomogeneous media. Discrete & Continuous Dynamical Systems - A, 2005, 13 (4) : 843-876. doi: 10.3934/dcds.2005.13.843

[4]

Tzong-Yow Lee and Fred Torcaso. Wave propagation in a lattice KPP equation in random media. Electronic Research Announcements, 1997, 3: 121-125.

[5]

Renjun Duan, Xiongfeng Yang. Stability of rarefaction wave and boundary layer for outflow problem on the two-fluid Navier-Stokes-Poisson equations. Communications on Pure & Applied Analysis, 2013, 12 (2) : 985-1014. doi: 10.3934/cpaa.2013.12.985

[6]

Fabio Camilli, Elisabetta Carlini, Claudio Marchi. A flame propagation model on a network with application to a blocking problem. Discrete & Continuous Dynamical Systems - S, 2018, 11 (5) : 825-843. doi: 10.3934/dcdss.2018051

[7]

Eric P. Choate, Hong Zhou. Optimization of electromagnetic wave propagation through a liquid crystal layer. Discrete & Continuous Dynamical Systems - S, 2015, 8 (2) : 303-312. doi: 10.3934/dcdss.2015.8.303

[8]

Dongbing Zha, Yi Zhou. The lifespan for quasilinear wave equations with multiple propagation speeds in four space dimensions. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1167-1186. doi: 10.3934/cpaa.2014.13.1167

[9]

Jong-Shenq Guo, Chang-Hong Wu. Recent developments on wave propagation in 2-species competition systems. Discrete & Continuous Dynamical Systems - B, 2012, 17 (8) : 2713-2724. doi: 10.3934/dcdsb.2012.17.2713

[10]

Yulong Xing, Ching-Shan Chou, Chi-Wang Shu. Energy conserving local discontinuous Galerkin methods for wave propagation problems. Inverse Problems & Imaging, 2013, 7 (3) : 967-986. doi: 10.3934/ipi.2013.7.967

[11]

Stéphane Junca, Bruno Lombard. Stability of neutral delay differential equations modeling wave propagation in cracked media. Conference Publications, 2015, 2015 (special) : 678-685. doi: 10.3934/proc.2015.0678

[12]

Charles L. Epstein, Leslie Greengard, Thomas Hagstrom. On the stability of time-domain integral equations for acoustic wave propagation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4367-4382. doi: 10.3934/dcds.2016.36.4367

[13]

Stéphane Heuraux, Filipe da Silva. Simulations on wave propagation in fluctuating fusion plasmas for Reflectometry applications and new developments. Discrete & Continuous Dynamical Systems - S, 2012, 5 (2) : 307-328. doi: 10.3934/dcdss.2012.5.307

[14]

P. M. Jordan, Louis Fishman. Phase space and path integral approach to wave propagation modeling. Conference Publications, 2001, 2001 (Special) : 199-210. doi: 10.3934/proc.2001.2001.199

[15]

Bo Su and Martin Burger. Global weak solutions of non-isothermal front propagation problem. Electronic Research Announcements, 2007, 13: 46-52.

[16]

Paolo Maremonti. A remark on the Stokes problem in Lorentz spaces. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1323-1342. doi: 10.3934/dcdss.2013.6.1323

[17]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[18]

Yacine Chitour, Guilherme Mazanti, Mario Sigalotti. Stability of non-autonomous difference equations with applications to transport and wave propagation on networks. Networks & Heterogeneous Media, 2016, 11 (4) : 563-601. doi: 10.3934/nhm.2016010

[19]

Mikko Kemppainen, Peter Sjögren, José Luis Torrea. Wave extension problem for the fractional Laplacian. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4905-4929. doi: 10.3934/dcds.2015.35.4905

[20]

Yoshikazu Giga. A remark on a Liouville problem with boundary for the Stokes and the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1277-1289. doi: 10.3934/dcdss.2013.6.1277

 Impact Factor: 

Metrics

  • PDF downloads (3)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]