2003, 2003(Special): 359-364. doi: 10.3934/proc.2003.2003.359

A nonlinear controlled system of differential equations describing the process of production and sales of a consumer good

1. 

Department of Mathematics and Computer Sciences, Texas Woman's University, Denton, TX 76204

2. 

Department of Computer Mathematics and Cybernetics, Moscow State Lomonosov University, Moscow, 119992

Received  July 2002 Published  April 2003

A nonlinear controlled system of differential equations has been constructed to describe the process of production and sales of a consumer good. This model can be controlled either by the rate of production or by the price of the good. The attainable sets of corresponding controlled systems are studied. It is shown that in both cases the boundaries of these sets are the unions of two two-parameter surfaces. It is proved that every point on the boundaries of the attainable sets is a result of piecewise constant controls with at most two switchings. Attainable sets for different values of parameters of the model will be demonstrated using MAPLE.
Citation: Ellina Grigorieva, Evgenii Khailov. A nonlinear controlled system of differential equations describing the process of production and sales of a consumer good. Conference Publications, 2003, 2003 (Special) : 359-364. doi: 10.3934/proc.2003.2003.359
[1]

Ellina Grigorieva, Evgenii Khailov, Andrei Korobeinikov. Parametrization of the attainable set for a nonlinear control model of a biochemical process. Mathematical Biosciences & Engineering, 2013, 10 (4) : 1067-1094. doi: 10.3934/mbe.2013.10.1067

[2]

Mariko Arisawa, Hitoshi Ishii. Some properties of ergodic attractors for controlled dynamical systems. Discrete & Continuous Dynamical Systems - A, 1998, 4 (1) : 43-54. doi: 10.3934/dcds.1998.4.43

[3]

Ghendrih Philippe, Hauray Maxime, Anne Nouri. Derivation of a gyrokinetic model. Existence and uniqueness of specific stationary solution. Kinetic & Related Models, 2009, 2 (4) : 707-725. doi: 10.3934/krm.2009.2.707

[4]

Sebastián Ferrer, Francisco Crespo. Parametric quartic Hamiltonian model. A unified treatment of classic integrable systems. Journal of Geometric Mechanics, 2014, 6 (4) : 479-502. doi: 10.3934/jgm.2014.6.479

[5]

Faker Ben Belgacem. Uniqueness for an ill-posed reaction-dispersion model. Application to organic pollution in stream-waters. Inverse Problems & Imaging, 2012, 6 (2) : 163-181. doi: 10.3934/ipi.2012.6.163

[6]

R. P. Gupta, Peeyush Chandra, Malay Banerjee. Dynamical complexity of a prey-predator model with nonlinear predator harvesting. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 423-443. doi: 10.3934/dcdsb.2015.20.423

[7]

Tan H. Cao, Boris S. Mordukhovich. Optimality conditions for a controlled sweeping process with applications to the crowd motion model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 267-306. doi: 10.3934/dcdsb.2017014

[8]

Steinar Evje, Aksel Hiorth. A mathematical model for dynamic wettability alteration controlled by water-rock chemistry. Networks & Heterogeneous Media, 2010, 5 (2) : 217-256. doi: 10.3934/nhm.2010.5.217

[9]

Lei Wang, Jinlong Yuan, Yingfang Li, Enmin Feng, Zhilong Xiu. Parameter identification of nonlinear delayed dynamical system in microbial fermentation based on biological robustness. Numerical Algebra, Control & Optimization, 2014, 4 (2) : 103-113. doi: 10.3934/naco.2014.4.103

[10]

Jibin Li, Yi Zhang. On the traveling wave solutions for a nonlinear diffusion-convection equation: Dynamical system approach. Discrete & Continuous Dynamical Systems - B, 2010, 14 (3) : 1119-1138. doi: 10.3934/dcdsb.2010.14.1119

[11]

Leong-Kwan Li, Sally Shao, K. F. Cedric Yiu. Nonlinear dynamical system modeling via recurrent neural networks and a weighted state space search algorithm. Journal of Industrial & Management Optimization, 2011, 7 (2) : 385-400. doi: 10.3934/jimo.2011.7.385

[12]

Yuting Ding, Jinli Xu, Jun Cao, Dongyan Zhang. Mathematical modeling about nonlinear delayed hydraulic cylinder system and its analysis on dynamical behaviors. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 943-958. doi: 10.3934/dcdss.2017049

[13]

Chongyang Liu, Zhaohua Gong, Enmin Feng, Hongchao Yin. Modelling and optimal control for nonlinear multistage dynamical system of microbial fed-batch culture. Journal of Industrial & Management Optimization, 2009, 5 (4) : 835-850. doi: 10.3934/jimo.2009.5.835

[14]

P.K. Newton. The dipole dynamical system. Conference Publications, 2005, 2005 (Special) : 692-699. doi: 10.3934/proc.2005.2005.692

[15]

Dina Kalinichenko, Volker Reitmann, Sergey Skopinov. Asymptotic behavior of solutions to a coupled system of Maxwell's equations and a controlled differential inclusion. Conference Publications, 2013, 2013 (special) : 407-414. doi: 10.3934/proc.2013.2013.407

[16]

Xiangnan He, Wenlian Lu, Tianping Chen. On transverse stability of random dynamical system. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 701-721. doi: 10.3934/dcds.2013.33.701

[17]

Jianfeng Feng, Mariya Shcherbina, Brunello Tirozzi. Dynamical behaviour of a large complex system. Communications on Pure & Applied Analysis, 2008, 7 (2) : 249-265. doi: 10.3934/cpaa.2008.7.249

[18]

Dorota Bors, Robert Stańczy. Dynamical system modeling fermionic limit. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 45-55. doi: 10.3934/dcdsb.2018004

[19]

Stephen Thompson, Thomas I. Seidman. Approximation of a semigroup model of anomalous diffusion in a bounded set. Evolution Equations & Control Theory, 2013, 2 (1) : 173-192. doi: 10.3934/eect.2013.2.173

[20]

Truong Q. Bao, Boris S. Mordukhovich. Refined necessary conditions in multiobjective optimization with applications to microeconomic modeling. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1069-1096. doi: 10.3934/dcds.2011.31.1069

 Impact Factor: 

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]