2003, 2003(Special): 108-112. doi: 10.3934/proc.2003.2003.108

Oscillation of second order difference equations with advanced argument

1. 

Department of Mathematics, Shanghai Jiao Tong University, Shanghai, 200030, China, China

Received  September 2002 Published  April 2003

In this paper, we are mainly concerned with the second order difference equations with advanced argument and give sufficient conditions for their solutions to be oscillatory.
Citation: Bi Ping, Maoan Han. Oscillation of second order difference equations with advanced argument. Conference Publications, 2003, 2003 (Special) : 108-112. doi: 10.3934/proc.2003.2003.108
[1]

Guy V. Norton, Robert D. Purrington. The Westervelt equation with a causal propagation operator coupled to the bioheat equation.. Evolution Equations & Control Theory, 2016, 5 (3) : 449-461. doi: 10.3934/eect.2016013

[2]

Xianyi Li, Deming Zhu. Comparison theorems of oscillation and nonoscillation for neutral difference equations with continuous arguments. Communications on Pure & Applied Analysis, 2003, 2 (4) : 579-589. doi: 10.3934/cpaa.2003.2.579

[3]

Josef Diblík, Klara Janglajew, Mária Kúdelčíková. An explicit coefficient criterion for the existence of positive solutions to the linear advanced equation. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2461-2467. doi: 10.3934/dcdsb.2014.19.2461

[4]

Jianqing Chen. A variational argument to finding global solutions of a quasilinear Schrödinger equation. Communications on Pure & Applied Analysis, 2008, 7 (1) : 83-88. doi: 10.3934/cpaa.2008.7.83

[5]

S. Huff, G. Olumolode, N. Pennington, A. Peterson. Oscillation of an Euler-Cauchy dynamic equation. Conference Publications, 2003, 2003 (Special) : 423-431. doi: 10.3934/proc.2003.2003.423

[6]

Yves Coudène. The Hopf argument. Journal of Modern Dynamics, 2007, 1 (1) : 147-153. doi: 10.3934/jmd.2007.1.147

[7]

Thierry Horsin, Peter I. Kogut, Olivier Wilk. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. II. Approximation of solutions and optimality conditions. Mathematical Control & Related Fields, 2016, 6 (4) : 595-628. doi: 10.3934/mcrf.2016017

[8]

Sebastián Ferrer, Martin Lara. Families of canonical transformations by Hamilton-Jacobi-Poincaré equation. Application to rotational and orbital motion. Journal of Geometric Mechanics, 2010, 2 (3) : 223-241. doi: 10.3934/jgm.2010.2.223

[9]

Manuel de León, Juan Carlos Marrero, David Martín de Diego. Linear almost Poisson structures and Hamilton-Jacobi equation. Applications to nonholonomic mechanics. Journal of Geometric Mechanics, 2010, 2 (2) : 159-198. doi: 10.3934/jgm.2010.2.159

[10]

Thierry Horsin, Peter I. Kogut. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. I. Existence result. Mathematical Control & Related Fields, 2015, 5 (1) : 73-96. doi: 10.3934/mcrf.2015.5.73

[11]

Yuri V. Rogovchenko, Fatoş Tuncay. Interval oscillation of a second order nonlinear differential equation with a damping term. Conference Publications, 2007, 2007 (Special) : 883-891. doi: 10.3934/proc.2007.2007.883

[12]

Peng Gao. Averaging principle for stochastic Kuramoto-Sivashinsky equation with a fast oscillation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5649-5684. doi: 10.3934/dcds.2018247

[13]

Esha Chatterjee, Sk. Sarif Hassan. On the asymptotic character of a generalized rational difference equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1707-1718. doi: 10.3934/dcds.2018070

[14]

Anatoli F. Ivanov, Sergei Trofimchuk. Periodic solutions and their stability of a differential-difference equation. Conference Publications, 2009, 2009 (Special) : 385-393. doi: 10.3934/proc.2009.2009.385

[15]

Seiji Ukai, Tong Yang, Huijiang Zhao. Exterior Problem of Boltzmann Equation with Temperature Difference. Communications on Pure & Applied Analysis, 2009, 8 (1) : 473-491. doi: 10.3934/cpaa.2009.8.473

[16]

Houda Hani, Moez Khenissi. Asymptotic behaviors of solutions for finite difference analogue of the Chipot-Weissler equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : 1421-1445. doi: 10.3934/dcdss.2016057

[17]

Robert Stegliński. On homoclinic solutions for a second order difference equation with p-Laplacian. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 487-492. doi: 10.3934/dcdsb.2018033

[18]

Jimmy Huang, Ali Asgary, Jianhong Wu. Advanced Disaster, Emergency and Rapid Response Simulation (ADERSIM). Big Data & Information Analytics, 2016, 1 (1) : v-v. doi: 10.3934/bdia.2016.1.1v

[19]

Marian Gidea, Clark Robinson. Obstruction argument for transition chains of tori interspersed with gaps. Discrete & Continuous Dynamical Systems - S, 2009, 2 (2) : 393-416. doi: 10.3934/dcdss.2009.2.393

[20]

Jiyu Zhong, Shengfu Deng. Two codimension-two bifurcations of a second-order difference equation from macroeconomics. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1581-1600. doi: 10.3934/dcdsb.2018062

 Impact Factor: 

Metrics

  • PDF downloads (3)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]