2005, 2005(Special): 692-699. doi: 10.3934/proc.2005.2005.692

The dipole dynamical system

1. 

Department of Aerospace & Mechanical Engineering and Department of Mathematics, University of Southern California, Los Angeles, CA 90089-1191

Received  September 2004 Revised  March 2005 Published  September 2005

A dynamical system governing the collective interaction of N point-vortexdipoles is derived.Each dipole has an inherent orientation $\psi $ and generates a velocity field that decayslike $O(\mu /2 \pi r^2)$ where $ \mu $ is the dipole strength and$r$ is the distance from the dipole.The system of N-complex ordinary differentialequations plus N-real ordinary differentialequations for the dipole positions and orientationsare derived based on theassumption that each dipole moves with and tries to align itselfwith the local fluid velocity field.
Citation: P.K. Newton. The dipole dynamical system. Conference Publications, 2005, 2005 (Special) : 692-699. doi: 10.3934/proc.2005.2005.692
[1]

Lihui Guo, Wancheng Sheng, Tong Zhang. The two-dimensional Riemann problem for isentropic Chaplygin gas dynamic system$^*$. Communications on Pure & Applied Analysis, 2010, 9 (2) : 431-458. doi: 10.3934/cpaa.2010.9.431

[2]

Piotr Biler, Tomasz Cieślak, Grzegorz Karch, Jacek Zienkiewicz. Local criteria for blowup in two-dimensional chemotaxis models. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 1841-1856. doi: 10.3934/dcds.2017077

[3]

Katrin Grunert. Blow-up for the two-component Camassa--Holm system. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2041-2051. doi: 10.3934/dcds.2015.35.2041

[4]

Yong Chen, Hongjun Gao, Yue Liu. On the Cauchy problem for the two-component Dullin-Gottwald-Holm system. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3407-3441. doi: 10.3934/dcds.2013.33.3407

[5]

Piotr Bogusław Mucha, Milan Pokorný, Ewelina Zatorska. Approximate solutions to a model of two-component reactive flow. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : 1079-1099. doi: 10.3934/dcdss.2014.7.1079

[6]

Christian Klingenberg, Marlies Pirner, Gabriella Puppo. A consistent kinetic model for a two-component mixture with an application to plasma. Kinetic & Related Models, 2017, 10 (2) : 445-465. doi: 10.3934/krm.2017017

[7]

Qiaoyi Hu, Zhixin Wu, Yumei Sun. Liouville theorems for periodic two-component shallow water systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 3085-3097. doi: 10.3934/dcds.2018134

[8]

Qin Wang, Kyungwoo Song. The regularity of sonic curves for the two-dimensional Riemann problems of the nonlinear wave system of Chaplygin gas. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1661-1675. doi: 10.3934/dcds.2016.36.1661

[9]

Luca Bisconti, Davide Catania. Global well-posedness of the two-dimensional horizontally filtered simplified Bardina turbulence model on a strip-like region. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1861-1881. doi: 10.3934/cpaa.2017090

[10]

Bilal Saad, Mazen Saad. Numerical analysis of a non equilibrium two-component two-compressible flow in porous media. Discrete & Continuous Dynamical Systems - S, 2014, 7 (2) : 317-346. doi: 10.3934/dcdss.2014.7.317

[11]

Stéphane Brull. Problem of evaporation-condensation for a two component gas in the slab. Kinetic & Related Models, 2008, 1 (2) : 185-221. doi: 10.3934/krm.2008.1.185

[12]

Ju Ge, Wancheng Sheng. The two dimensional gas expansion problem of the Euler equations for the generalized Chaplygin gas. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2733-2748. doi: 10.3934/cpaa.2014.13.2733

[13]

Elissar Nasreddine. Two-dimensional individual clustering model. Discrete & Continuous Dynamical Systems - S, 2014, 7 (2) : 307-316. doi: 10.3934/dcdss.2014.7.307

[14]

Jerzy Gawinecki, Wojciech M. Zajączkowski. Global regular solutions to two-dimensional thermoviscoelasticity. Communications on Pure & Applied Analysis, 2016, 15 (3) : 1009-1028. doi: 10.3934/cpaa.2016.15.1009

[15]

Ibrahim Fatkullin, Valeriy Slastikov. Diffusive transport in two-dimensional nematics. Discrete & Continuous Dynamical Systems - S, 2015, 8 (2) : 323-340. doi: 10.3934/dcdss.2015.8.323

[16]

Min Chen. Numerical investigation of a two-dimensional Boussinesq system. Discrete & Continuous Dynamical Systems - A, 2009, 23 (4) : 1169-1190. doi: 10.3934/dcds.2009.23.1169

[17]

Lars Lamberg, Lauri Ylinen. Two-Dimensional tomography with unknown view angles. Inverse Problems & Imaging, 2007, 1 (4) : 623-642. doi: 10.3934/ipi.2007.1.623

[18]

Jibin Li. Bifurcations and exact travelling wave solutions of the generalized two-component Hunter-Saxton system. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1719-1729. doi: 10.3934/dcdsb.2014.19.1719

[19]

Qiaoyi Hu, Zhijun Qiao. Persistence properties and unique continuation for a dispersionless two-component Camassa-Holm system with peakon and weak kink solutions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2613-2625. doi: 10.3934/dcds.2016.36.2613

[20]

Jingqun Wang, Lixin Tian, Weiwei Guo. Global exact controllability and asympotic stabilization of the periodic two-component $\mu\rho$-Hunter-Saxton system. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 2129-2148. doi: 10.3934/dcdss.2016088

 Impact Factor: 

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]