2005, 2005(Special): 672-681. doi: 10.3934/proc.2005.2005.672

Controllability to trajectories for semilinear thermoelastic plates

1. 

Department of Mathematics, University of Brescia, Via Valotti, 9. 25133 Brescia, Italy

Received  September 2004 Revised  March 2005 Published  September 2005

The controllability to trajectories for semilinear thermoelastic plates by a control source acting only on the heat equation of the system is considered. The method we use combines the analyticity of the associated semigroup of the linearized problem and Kakutani fixed point theorem.
Citation: Maria Grazia Naso. Controllability to trajectories for semilinear thermoelastic plates. Conference Publications, 2005, 2005 (Special) : 672-681. doi: 10.3934/proc.2005.2005.672
[1]

Irena Lasiecka, Roberto Triggiani. A sharp trace result on a thermo-elastic plate equation with coupled hinged/Neumann boundary conditions . Discrete & Continuous Dynamical Systems - A, 1999, 5 (3) : 585-598. doi: 10.3934/dcds.1999.5.585

[2]

Shui-Hung Hou. On an application of fixed point theorem to nonlinear inclusions. Conference Publications, 2011, 2011 (Special) : 692-697. doi: 10.3934/proc.2011.2011.692

[3]

Michela Eleuteri, Jana Kopfová, Pavel Krejčí. Fatigue accumulation in a thermo-visco-elastoplastic plate. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2091-2109. doi: 10.3934/dcdsb.2014.19.2091

[4]

Orazio Arena. A problem of boundary controllability for a plate. Evolution Equations & Control Theory, 2013, 2 (4) : 557-562. doi: 10.3934/eect.2013.2.557

[5]

Jeffrey W. Lyons. An application of an avery type fixed point theorem to a second order antiperiodic boundary value problem. Conference Publications, 2015, 2015 (special) : 775-782. doi: 10.3934/proc.2015.0775

[6]

Moncef Aouadi, Taoufik Moulahi. The controllability of a thermoelastic plate problem revisited. Evolution Equations & Control Theory, 2018, 7 (1) : 1-31. doi: 10.3934/eect.2018001

[7]

Enrique Fernández-Cara, Arnaud Münch. Numerical null controllability of semi-linear 1-D heat equations: Fixed point, least squares and Newton methods. Mathematical Control & Related Fields, 2012, 2 (3) : 217-246. doi: 10.3934/mcrf.2012.2.217

[8]

Junjiang Lai, Jianguo Huang. A finite element method for vibration analysis of elastic plate-plate structures. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 387-419. doi: 10.3934/dcdsb.2009.11.387

[9]

I. D. Chueshov. Interaction of an elastic plate with a linearized inviscid incompressible fluid. Communications on Pure & Applied Analysis, 2014, 13 (5) : 1759-1778. doi: 10.3934/cpaa.2014.13.1759

[10]

David M. McClendon. An Ambrose-Kakutani representation theorem for countable-to-1 semiflows. Discrete & Continuous Dynamical Systems - S, 2009, 2 (2) : 251-268. doi: 10.3934/dcdss.2009.2.251

[11]

Nicholas Long. Fixed point shifts of inert involutions. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1297-1317. doi: 10.3934/dcds.2009.25.1297

[12]

Antonino Morassi, Edi Rosset, Sergio Vessella. Unique determination of a cavity in an elastic plate by two boundary measurements. Inverse Problems & Imaging, 2007, 1 (3) : 481-506. doi: 10.3934/ipi.2007.1.481

[13]

Jorge Groisman. Expansive and fixed point free homeomorphisms of the plane. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1709-1721. doi: 10.3934/dcds.2012.32.1709

[14]

Luis Hernández-Corbato, Francisco R. Ruiz del Portal. Fixed point indices of planar continuous maps. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 2979-2995. doi: 10.3934/dcds.2015.35.2979

[15]

Antonio Garcia. Transition tori near an elliptic-fixed point. Discrete & Continuous Dynamical Systems - A, 2000, 6 (2) : 381-392. doi: 10.3934/dcds.2000.6.381

[16]

Scott W. Hansen, Oleg Yu Imanuvilov. Exact controllability of a multilayer Rao-Nakra plate with free boundary conditions. Mathematical Control & Related Fields, 2011, 1 (2) : 189-230. doi: 10.3934/mcrf.2011.1.189

[17]

Cung The Anh, Vu Manh Toi. Local exact controllability to trajectories of the magneto-micropolar fluid equations. Evolution Equations & Control Theory, 2017, 6 (3) : 357-379. doi: 10.3934/eect.2017019

[18]

Sergei A. Avdonin, Boris P. Belinskiy. On controllability of a linear elastic beam with memory under longitudinal load. Evolution Equations & Control Theory, 2014, 3 (2) : 231-245. doi: 10.3934/eect.2014.3.231

[19]

Parin Chaipunya, Poom Kumam. Fixed point theorems for cyclic operators with application in Fractional integral inclusions with delays. Conference Publications, 2015, 2015 (special) : 248-257. doi: 10.3934/proc.2015.0248

[20]

Dou Dou, Meng Fan, Hua Qiu. Topological entropy on subsets for fixed-point free flows. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6319-6331. doi: 10.3934/dcds.2017273

 Impact Factor: 

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]