• Previous Article
    Monotone local semiflows with saddle-point dynamics and applications to semilinear diffusion equations
  • PROC Home
  • This Issue
  • Next Article
    Explicit necessary and sufficient conditions for the existence of a dead core solution of a p-laplacian steady-state reaction-diffusion problem
2005, 2005(Special): 576-586. doi: 10.3934/proc.2005.2005.576

Partial regularity of solutions to a class of strongly coupled degenerate parabolic systems

1. 

Department of Mathematics, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, United States

Received  September 2004 Revised  February 2005 Published  September 2005

Using the method of heat approximation, we will establish partial regularity results for bounded weak solutions to certain strongly coupled degenerate parabolic systems.
Citation: Dung Le. Partial regularity of solutions to a class of strongly coupled degenerate parabolic systems. Conference Publications, 2005, 2005 (Special) : 576-586. doi: 10.3934/proc.2005.2005.576
[1]

Shuhong Chen, Zhong Tan. Optimal interior partial regularity for nonlinear elliptic systems. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 981-993. doi: 10.3934/dcds.2010.27.981

[2]

Farid Ammar Khodja, Franz Chouly, Michel Duprez. Partial null controllability of parabolic linear systems. Mathematical Control & Related Fields, 2016, 6 (2) : 185-216. doi: 10.3934/mcrf.2016001

[3]

Brooke L. Hollingsworth, R.E. Showalter. Semilinear degenerate parabolic systems and distributed capacitance models. Discrete & Continuous Dynamical Systems - A, 1995, 1 (1) : 59-76. doi: 10.3934/dcds.1995.1.59

[4]

Dung Le. Higher integrability for gradients of solutions to degenerate parabolic systems. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 597-608. doi: 10.3934/dcds.2010.26.597

[5]

Shuhong Chen, Zhong Tan. Optimal partial regularity results for nonlinear elliptic systems in Carnot groups. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3391-3405. doi: 10.3934/dcds.2013.33.3391

[6]

Dian Palagachev, Lubomira Softova. A priori estimates and precise regularity for parabolic systems with discontinuous data. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 721-742. doi: 10.3934/dcds.2005.13.721

[7]

Sachiko Ishida, Tomomi Yokota. Blow-up in finite or infinite time for quasilinear degenerate Keller-Segel systems of parabolic-parabolic type. Discrete & Continuous Dynamical Systems - B, 2013, 18 (10) : 2569-2596. doi: 10.3934/dcdsb.2013.18.2569

[8]

Kyeong-Hun Kim, Kijung Lee. A weighted $L_p$-theory for second-order parabolic and elliptic partial differential systems on a half space. Communications on Pure & Applied Analysis, 2016, 15 (3) : 761-794. doi: 10.3934/cpaa.2016.15.761

[9]

Nobuyuki Kato, Norio Kikuchi. Campanato-type boundary estimates for Rothe's scheme to parabolic partial differential systems with constant coefficients. Discrete & Continuous Dynamical Systems - A, 2007, 19 (4) : 737-760. doi: 10.3934/dcds.2007.19.737

[10]

Sachiko Ishida. $L^\infty$-decay property for quasilinear degenerate parabolic-elliptic Keller-Segel systems. Conference Publications, 2013, 2013 (special) : 335-344. doi: 10.3934/proc.2013.2013.335

[11]

Alexandre Montaru. Wellposedness and regularity for a degenerate parabolic equation arising in a model of chemotaxis with nonlinear sensitivity. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 231-256. doi: 10.3934/dcdsb.2014.19.231

[12]

Dung Le. Global existence and regularity results for strongly coupled nonregular parabolic systems via iterative methods. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 877-893. doi: 10.3934/dcdsb.2017044

[13]

El Mustapha Ait Ben Hassi, Farid Ammar khodja, Abdelkarim Hajjaj, Lahcen Maniar. Carleman Estimates and null controllability of coupled degenerate systems. Evolution Equations & Control Theory, 2013, 2 (3) : 441-459. doi: 10.3934/eect.2013.2.441

[14]

Antonio Algaba, Cristóbal García, Jaume Giné. Analytic integrability for some degenerate planar systems. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2797-2809. doi: 10.3934/cpaa.2013.12.2797

[15]

Michal Fečkan. Bifurcation from degenerate homoclinics in periodically forced systems. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 359-374. doi: 10.3934/dcds.1999.5.359

[16]

Hans Wilhelm Alt. An abstract existence theorem for parabolic systems. Communications on Pure & Applied Analysis, 2012, 11 (5) : 2079-2123. doi: 10.3934/cpaa.2012.11.2079

[17]

Maria Alessandra Ragusa. Parabolic systems with non continuous coefficients. Conference Publications, 2003, 2003 (Special) : 727-733. doi: 10.3934/proc.2003.2003.727

[18]

Guji Tian, Xu-Jia Wang. Partial regularity for elliptic equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 899-913. doi: 10.3934/dcds.2010.28.899

[19]

Juan Dávila, Olivier Goubet. Partial regularity for a Liouville system. Discrete & Continuous Dynamical Systems - A, 2014, 34 (6) : 2495-2503. doi: 10.3934/dcds.2014.34.2495

[20]

Sun-Sig Byun, Hongbin Chen, Mijoung Kim, Lihe Wang. Lp regularity theory for linear elliptic systems. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 121-134. doi: 10.3934/dcds.2007.18.121

 Impact Factor: 

Metrics

  • PDF downloads (1)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]