2005, 2005(Special): 518-523. doi: 10.3934/proc.2005.2005.518

2-wild trajectories

1. 

Auburn University, Department of Mathematics, Auburn, AL 36830-5310, United States

Received  September 2004 Revised  May 2005 Published  September 2005

Every orientable boundaryless 3-manifold admits a continuous dynamical system with a discrete set of fixed points and every non-trivial semi-trajectory wild.
Citation: Krystyna Kuperberg. 2-wild trajectories. Conference Publications, 2005, 2005 (Special) : 518-523. doi: 10.3934/proc.2005.2005.518
[1]

Katsutoshi Shinohara. On the index problem of $C^1$-generic wild homoclinic classes in dimension three. Discrete & Continuous Dynamical Systems - A, 2011, 31 (3) : 913-940. doi: 10.3934/dcds.2011.31.913

[2]

Naveen K. Vaidya, Feng-Bin Wang, Xingfu Zou. Avian influenza dynamics in wild birds with bird mobility and spatial heterogeneous environment. Discrete & Continuous Dynamical Systems - B, 2012, 17 (8) : 2829-2848. doi: 10.3934/dcdsb.2012.17.2829

[3]

A. Liang, C. Wang, W. Liu, L. Li. Robust and flexible landmarks detection for uncontrolled frontal faces in the wild. Numerical Algebra, Control & Optimization, 2016, 6 (3) : 263-296. doi: 10.3934/naco.2016011

[4]

Jonathan E. Rubin, Justyna Signerska-Rynkowska, Jonathan D. Touboul, Alexandre Vidal. Wild oscillations in a nonlinear neuron model with resets: (Ⅱ) Mixed-mode oscillations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 4003-4039. doi: 10.3934/dcdsb.2017205

[5]

Dobromir T. Dimitrov, Aaron A. King. Modeling evolution and persistence of neurological viral diseases in wild populations. Mathematical Biosciences & Engineering, 2008, 5 (4) : 729-741. doi: 10.3934/mbe.2008.5.729

[6]

Jonathan E. Rubin, Justyna Signerska-Rynkowska, Jonathan D. Touboul, Alexandre Vidal. Wild oscillations in a nonlinear neuron model with resets: (Ⅰ) Bursting, spike-adding and chaos. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3967-4002. doi: 10.3934/dcdsb.2017204

[7]

Yun Kang, Carlos Castillo-Chávez. A simple epidemiological model for populations in the wild with Allee effects and disease-modified fitness. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 89-130. doi: 10.3934/dcdsb.2014.19.89

[8]

Evan Milliken, Sergei S. Pilyugin. A model of infectious salmon anemia virus with viral diffusion between wild and farmed patches. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1869-1893. doi: 10.3934/dcdsb.2016027

[9]

Vladimir V. Chepyzhov. Trajectory attractors for non-autonomous dissipative 2d Euler equations. Discrete & Continuous Dynamical Systems - B, 2015, 20 (3) : 811-832. doi: 10.3934/dcdsb.2015.20.811

[10]

Joey Y. Huang. Trajectory of a moving curveball in viscid flow. Conference Publications, 2001, 2001 (Special) : 191-198. doi: 10.3934/proc.2001.2001.191

[11]

Monique Chyba, Thomas Haberkorn, Ryan N. Smith, George Wilkens. A geometric analysis of trajectory design for underwater vehicles. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 233-262. doi: 10.3934/dcdsb.2009.11.233

[12]

Dale McDonald. Sensitivity based trajectory following control damping methods. Numerical Algebra, Control & Optimization, 2013, 3 (1) : 127-143. doi: 10.3934/naco.2013.3.127

[13]

V. V. Chepyzhov, A. Miranville. Trajectory and global attractors of dissipative hyperbolic equations with memory. Communications on Pure & Applied Analysis, 2005, 4 (1) : 115-142. doi: 10.3934/cpaa.2005.4.115

[14]

Vladimir Chepyzhov, Alexei Ilyin, Sergey Zelik. Strong trajectory and global $\mathbf{W^{1,p}}$-attractors for the damped-driven Euler system in $\mathbb R^2$. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1835-1855. doi: 10.3934/dcdsb.2017109

[15]

Péter Koltai. A stochastic approach for computing the domain of attraction without trajectory simulation. Conference Publications, 2011, 2011 (Special) : 854-863. doi: 10.3934/proc.2011.2011.854

[16]

Liming Sun, Li-Zhi Liao. An interior point continuous path-following trajectory for linear programming. Journal of Industrial & Management Optimization, 2018, 13 (5) : 1-18. doi: 10.3934/jimo.2018107

[17]

Gabriel Deugoue. Approximation of the trajectory attractor of the 3D MHD System. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2119-2144. doi: 10.3934/cpaa.2013.12.2119

[18]

Vladimir V. Chepyzhov, Mark I. Vishik. Trajectory attractor for reaction-diffusion system with diffusion coefficient vanishing in time. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1493-1509. doi: 10.3934/dcds.2010.27.1493

[19]

Bao-Zhu Guo, Liang Zhang. Local exact controllability to positive trajectory for parabolic system of chemotaxis. Mathematical Control & Related Fields, 2016, 6 (1) : 143-165. doi: 10.3934/mcrf.2016.6.143

[20]

Anatoli Babin, Alexander Figotin. Newton's law for a trajectory of concentration of solutions to nonlinear Schrodinger equation. Communications on Pure & Applied Analysis, 2014, 13 (5) : 1685-1718. doi: 10.3934/cpaa.2014.13.1685

 Impact Factor: 

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]