• Previous Article
    Global strong solution to the initial-boundary value problem of a 2-D Kazhikhov-Smagulov type model
  • DCDS-S Home
  • This Issue
  • Next Article
    Linearized stationary incompressible flow around rotating and translating bodies -- Leray solutions
2014, 7(5): 925-965. doi: 10.3934/dcdss.2014.7.925

Flow-plate interactions: Well-posedness and long-time behavior

1. 

Kharkov University, Department of Mathematics and Mechanics, 4 Svobody sq, 61077 Kharkov

2. 

University of Memphis, Department of Mathematical Sciences, 373 Dunn Hall, Memphis, TN 38152, United States

3. 

Oregon State University, Department of Mathematics, 368 Kidder Hall, Corvallis, OR 97330, United States

Received  March 2013 Revised  June 2013 Published  May 2014

We consider flow-structure interactions modeled by a modified wave equation coupled at an interface with equations of nonlinear elasticity. Both subsonic and supersonic flow velocities are treated with Neumann type flow conditions, and a novel treatment of the so called Kutta-Joukowsky flow conditions are given in the subsonic case. The goal of the paper is threefold: (i) to provide an accurate review of recent results on existence, uniqueness, and stability of weak solutions, (ii) to present a construction of finite dimensional, attracting sets corresponding to the structural dynamics and discuss convergence of trajectories, and (iii) to state several open questions associated with the topic. This second task is based on a decoupling technique which reduces the analysis of the full flow-structure system to a PDE system with delay.
Citation: Igor Chueshov, Irena Lasiecka, Justin Webster. Flow-plate interactions: Well-posedness and long-time behavior. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : 925-965. doi: 10.3934/dcdss.2014.7.925
References:
[1]

A. Babin and M. Vishik, Attractors of Evolution Equations,, Studies in Mathematics and its Applications, (1992).

[2]

A. V. Balakrishnan, Aeroelasticity. Continuum Theory,, Springer, (2012). doi: 10.1007/978-1-4614-3609-6.

[3]

A. V. Balakrishnan, Nonlinear aeroelastic theory: Continuum models,, in Control Methods in PDE-Dynamical Systems, (2007), 79. doi: 10.1090/conm/426/08185.

[4]

A. V. Balakrishnan and M. A. Shubov, Asymptotic behaviour of the aeroelastic modes for an aircraft wing model in a subsonic air flow,, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 460 (2004), 1057. doi: 10.1098/rspa.2003.1217.

[5]

H. M. Berger, A new approach to the analysis of large deflections of plates,, J. Appl. Mech., 22 (1955), 465.

[6]

R. Bisplinghoff and H. Ashley, Principles of Aeroelasticity,, John Wiley and Sons, (1962).

[7]

L. Bociu and D. Toundykov, Attractors for non-dissipative irrotational von Karman plates with boundary damping,, J. Diff. Eqs., 253 (2012), 3568. doi: 10.1016/j.jde.2012.08.004.

[8]

V. V. Bolotin, Nonconservative Problems of Elastic Stability,, Pergamon Press, (1963).

[9]

A. Boutet de Monvel and I. Chueshov, The problem of interaction of von Karman plate with subsonic flow gas,, Math. Methods in Appl. Sc., 22 (1999), 801. doi: 10.1002/(SICI)1099-1476(19990710)22:10<801::AID-MMA61>3.0.CO;2-T.

[10]

L. Boutet de Monvel and I. Chueshov, Non-linear oscillations of a plate in a flow of gas,, C. R. Acad. Sci. Paris, 322 (1996), 1001.

[11]

L. Boutet de Monvel and I. Chueshov, Oscillation of von Karman's plate in a potential flow of gas,, Izvestiya RAN: Ser. Mat., 63 (1999), 219. doi: 10.1070/im1999v063n02ABEH000237.

[12]

L. Boutet de Monvel, I. Chueshov and A. Rezounenko, Long-time behaviour of strong solutions of retarded nonlinear PDEs,, Comm. PDEs, 22 (1997), 1453. doi: 10.1080/03605309708821307.

[13]

A. Chambolle, B. Desjardins, M. Esteban and C. Grandmont, Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate,, J. Math. Fluid Mech., 7 (2005), 368. doi: 10.1007/s00021-004-0121-y.

[14]

A. J. Chorin and J. E. Marsden, A Mathematical Introduction to Fluid Mechanics,, 3rd edition, (1993).

[15]

I. Chueshov, On a system of equations with delay that arises in aero-elasticity,, (in Russian) Teor. Funktsii Funktsional. Anal. i Prilozhen, 58 (1990), 123. doi: 10.1007/BF01097291.

[16]

I. Chueshov, Introduction to the Theory of Infinite Dimensional Dissipative Systems,, (in Russian) Acta, (1999).

[17]

I. Chueshov, Dynamics of von Karman plate in a potential flow of gas: Rigorous results and unsolved problems,, in Proceedings of the 16th IMACS World Congress, (2000), 1.

[18]

I. Chueshov, Dynamics of a nonlinear elastic plate interacting with a linearized compressible viscous fluid,, Nonlinear Analysis: Theory, 95 (2014), 650. doi: 10.1016/j.na.2013.10.018.

[19]

I. Chueshov, Interaction of an elastic plate with a linearized inviscid incompressible fluid,, Commun. Pure Appl. Anal., (2014). doi: 10.1016/j.na.2013.10.018.

[20]

I. Chueshov and I. Lasiecka, Attractors for second-order evolution equations with a nonlinear damping,, J. of Dyn. and Diff. Equations, 16 (2004), 469. doi: 10.1007/s10884-004-4289-x.

[21]

I. Chueshov and I. Lasiecka, Long-time behavior of second-order evolutions with nonlinear damping,, Mem. Amer. Math. Soc., 195 (2008). doi: 10.1090/memo/0912.

[22]

I. Chueshov and I. Lasiecka, Von Karman Evolution Equations. Well-posedness and Long-Time Dynamics,, Springer Monographs in Mathematics, (2010). doi: 10.1007/978-0-387-87712-9.

[23]

I. Chueshov and I. Lasiecka, Generation of a semigroup and hidden regularity in nonlinear subsonic flow-structure interactions with absorbing boundary conditions,, Jour. Abstr. Differ. Equ. Appl., 3 (2012), 1.

[24]

I. Chueshov, I. Lasiecka and J. T. Webster, Attractors for delayed, non-rotational von Karman plates with applications to flow-structure interactions without any damping,, submitted, (2012).

[25]

I. Chueshov, I. Lasiecka and J. T. Webster, Evolution semigroups for supersonic flow-plate interactions,, J. of Diff. Eqs., 254 (2013), 1741. doi: 10.1016/j.jde.2012.11.009.

[26]

I. Chueshov and A. Rezounenko, Global attractors for a class of retarded quasilinear partial differential equations,, C. R. Acad. Sci. Paris, 321 (1995), 607.

[27]

I. Chueshov and I. Ryzhkova, A global attractor for a fluid-plate interaction model,, Comm. Pure Appl. Anal., 12 (2013), 1635. doi: 10.3934/cpaa.2013.12.1635.

[28]

I. Chueshov and I. Ryzhkova, Unsteady interaction of a viscous fluid with an elastic shell modeled by full von Karman equations,, J. Diff. Eqs., 254 (2013), 1833. doi: 10.1016/j.jde.2012.11.006.

[29]

I. Chueshov and I. Ryzhkova, On interaction of an elastic wall with a Poiseuille-type flow,, Ukrainian Mathematical J., 65 (2013), 158. doi: 10.1007/s11253-013-0771-0.

[30]

I. Chueshov and I. Ryzhkova, Well-posedness and long time behavior for a class of fluid-plate interaction models,, in System Modeling and Optimization. 25th IFIP TC7 Conference, (2011), 12. doi: 10.1007/978-3-642-36062-6_33.

[31]

P. Ciarlet and P. Rabier, Les Équations de Von Kármán,, Lecture Notes in Mathematics, (1980).

[32]

C. Mei, K. Abdel-Motagaly and R. Chen, Review of nonlinear panel flutter at supersonic and hypersonic speeds,, Appl. Mech. Rev., 52 (1999), 321.

[33]

K. F. Clancey, On finite Hilbert transforms,, Transactions AMS, 212 (1975), 347. doi: 10.1090/S0002-9947-1975-0377598-5.

[34]

D. G. Crighton, The Kutta condition in unsteady flow,, Ann. Rev. Fluid Mech., 17 (1985), 411. doi: 10.1146/annurev.fluid.17.1.411.

[35]

O. Diekmann, S. van Gils, S. Lunel and H. O. Walther, Delay Equations,, Springer, (1995).

[36]

E. Dowell, Nonlinear oscillations of a fluttering plate, I and II,, AIAA J., 4 (1966), 1267.

[37]

E. Dowell, Panel flutter-A review of the aeroelastic stability of plates and shells,, AIAA Journal, 8 (1970), 385.

[38]

E. Dowell, O. Bendiksen, J. Edwards and T. Strganac, Transonic Nonlinear Aeroelasticity,, Encyclopedia of Aerospace Engineering, (2003). doi: 10.1002/9780470686652.eae151.

[39]

, E. Dowell,, Private Communication., ().

[40]

E. Dowell, A Modern Course in Aeroelasticity,, Kluwer Academic Publishers, (2004).

[41]

C. Eloy, C. Souilliez and L. Schouveiler, Flutter of a rectangular plate,, J. Fluids and Structures, 23 (2007), 904. doi: 10.1016/j.jfluidstructs.2007.02.002.

[42]

A. Favini, M. Horn, I. Lasiecka and D. Tataru, Global existence, uniqueness and regularity of solutions to a von Karman system with nonlinear boundary dissipation,, Diff. Int. Eqs, 9 (1966), 267.

[43]

W. Frederiks, H. C. J. Hilbering and J. A. Sparenberg, On the Kutta condition for the flow along a semi-infinite elastic plate,, J. Engin. Math., 20 (1986), 27. doi: 10.1007/BF00039321.

[44]

P. G. Geredeli, I. Lasiecka and J. T. Webster, Smooth attractors of finite dimension for von Karman evolutions with nonlinear damping localized in a boundary layer,, J. of Diff. Eqs., 254 (2013), 1193. doi: 10.1016/j.jde.2012.10.016.

[45]

D. H. Hodges and G. A. Pierce, Introduction to Structural Dynamics and Aeroelasticity,, Cambridge Univ. Press, (2002). doi: 10.1115/1.1566393.

[46]

P. Holmes and J. Marsden, Bifurcation to divergence and flutter in flow-induced oscillations: an infinite dimensional analysis,, Automatica, 14 (1978), 367. doi: 10.1016/0005-1098(78)90036-5.

[47]

M. Ignatova, I. Kukavica, I. Lasiecka and A. Tuffaha, On well-posedness for a free boundary fluid-structure model,, J. of Math. Phys., 53 (2012), 115624. doi: 10.1063/1.4766724.

[48]

T. Von Kármán, Festigkeitsprobleme in Maschinenbau,, Encyklopedie der Mathematischen Wissenschaften, (1910), 348.

[49]

A. K. Khanmmamedov, Global attractors for von Karman equations with non-linear dissipation,, J. Math. Anal. Appl., 318 (2006), 92. doi: 10.1016/j.jmaa.2005.05.031.

[50]

A. Kornecki, E. H. Dowell and J. O'Brien, On the aeroelastic instability of two-dimensional panes in uniform incompressible flow,, 47 (1976), 47 (1976), 163.

[51]

E. A. Krasil'shchikova, The Thin Wing in a Compressible Flow,, (in Russian) {Nauka}, (1978).

[52]

O. Ladyzhenskaya, Attractors for Semigroups and Evolution Equations,, Cambridge University Press, (1991). doi: 10.1017/CBO9780511569418.

[53]

J. Lagnese, Boundary Stabilization of Thin Plates,, SIAM, (1989). doi: 10.1137/1.9781611970821.

[54]

L. Landau and E. Lifshitz, Course of Theoretical Physics. Vol. 6. Fluid Mechanics,, Pergamon Press, (1963).

[55]

I. Lasiecka, Mathematical Control Theory of Coupled PDE's,, CMBS-NSF Lecture Notes, (2002). doi: 10.1137/1.9780898717099.

[56]

I. Lasiecka, J. L. Lions and R. Triggiani, Nonhomogenuous boundary value problems for second order hyperbolic operators,, J. Math. Pure et Appliques, 65 (1986), 149.

[57]

I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations, Vol. I, II,, Cambridge University Press, (2000).

[58]

I. Lasiecka and J. T. Webster, Generation of bounded semigroups in nonlinear flow-structure interactions with boundary damping,, Math. Methods in App. Sc., 36 (2013), 1995. doi: 10.1002/mma.1518.

[59]

I. Lasiecka and J. T. Webster, Long-time dynamics and control of subsonic flow-structure interactions,, Proceedings of the 2012 American Control Conference, (2012).

[60]

I. Laseicka and J. T. Webster, Eliminating flutter for clamped von Karman plates immersed in subsonic flows,, Discrete Contin. Dyn. Syst. Ser. S, (2014).

[61]

E. Livne, Future of Airplane Aeroelasticity,, J. of Aircraft, 40 (2003), 1066. doi: 10.2514/2.7218.

[62]

S. Miyatake, Mixed problem for hyperbolic equation of second order,, J. Math. Kyoto Univ., 13 (1973), 435.

[63]

S. Okada and D. Elliott, The finite Hilbert transform in $L_2$,, Math. Nachr., 153 (1991), 43. doi: 10.1002/mana.19911530105.

[64]

I. Ryzhkova, Stabilization of a von Karman plate in the presence of thermal effects in a subsonic potential flow of gas,, J. Math. Anal. and Appl., 294 (2004), 462. doi: 10.1016/j.jmaa.2004.02.021.

[65]

I. Ryzhkova, Dynamics of a thermoelastic von Karman plate in a subsonic gas flow,, Zeitschrift Ang. Math. Phys., 58 (2007), 246. doi: 10.1007/s00033-006-0080-7.

[66]

M. Shubov, Riesz basis property of mode shapes for aircraft wing model (subsonic case),, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 462 (2006), 607. doi: 10.1098/rspa.2005.1579.

[67]

M. Shubov, Solvability of reduced Possio integral equation in theoretical aeroelasticity,, Adv. Diff. Eqs., 15 (2010), 801.

[68]

D. Tataru, On the regularity of boundary traces for the wave equation., Ann. Scuola Normale. Sup. di Pisa., 26 (1998), 185.

[69]

R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics,, Springer-Verlag, (1988). doi: 10.1007/978-1-4684-0313-8.

[70]

F. G. Tricomi, Integral Equations,, Interscience Publishers Inc., (1957).

[71]

V. V. Vedeneev, Effect of damping on flutter of simply supported and clamped panels at low supersonic speeds,, Journal of Fluids and Structures, 40 (2013), 366. doi: 10.1016/j.jfluidstructs.2013.04.004.

[72]

J. Wu, Theory and Applications of Partial Functional Differential Equations,, Springer, (1996). doi: 10.1007/978-1-4612-4050-1.

[73]

J. T. Webster, Weak and strong solutions of a nonlinear subsonic flow-structure interaction: semigroup approach,, Nonlinear Analysis, 74 (2011), 3123. doi: 10.1016/j.na.2011.01.028.

[74]

H. Widom, Integral Equations in $L_p$,, Transactions AMS, 97 (1960), 131.

show all references

References:
[1]

A. Babin and M. Vishik, Attractors of Evolution Equations,, Studies in Mathematics and its Applications, (1992).

[2]

A. V. Balakrishnan, Aeroelasticity. Continuum Theory,, Springer, (2012). doi: 10.1007/978-1-4614-3609-6.

[3]

A. V. Balakrishnan, Nonlinear aeroelastic theory: Continuum models,, in Control Methods in PDE-Dynamical Systems, (2007), 79. doi: 10.1090/conm/426/08185.

[4]

A. V. Balakrishnan and M. A. Shubov, Asymptotic behaviour of the aeroelastic modes for an aircraft wing model in a subsonic air flow,, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 460 (2004), 1057. doi: 10.1098/rspa.2003.1217.

[5]

H. M. Berger, A new approach to the analysis of large deflections of plates,, J. Appl. Mech., 22 (1955), 465.

[6]

R. Bisplinghoff and H. Ashley, Principles of Aeroelasticity,, John Wiley and Sons, (1962).

[7]

L. Bociu and D. Toundykov, Attractors for non-dissipative irrotational von Karman plates with boundary damping,, J. Diff. Eqs., 253 (2012), 3568. doi: 10.1016/j.jde.2012.08.004.

[8]

V. V. Bolotin, Nonconservative Problems of Elastic Stability,, Pergamon Press, (1963).

[9]

A. Boutet de Monvel and I. Chueshov, The problem of interaction of von Karman plate with subsonic flow gas,, Math. Methods in Appl. Sc., 22 (1999), 801. doi: 10.1002/(SICI)1099-1476(19990710)22:10<801::AID-MMA61>3.0.CO;2-T.

[10]

L. Boutet de Monvel and I. Chueshov, Non-linear oscillations of a plate in a flow of gas,, C. R. Acad. Sci. Paris, 322 (1996), 1001.

[11]

L. Boutet de Monvel and I. Chueshov, Oscillation of von Karman's plate in a potential flow of gas,, Izvestiya RAN: Ser. Mat., 63 (1999), 219. doi: 10.1070/im1999v063n02ABEH000237.

[12]

L. Boutet de Monvel, I. Chueshov and A. Rezounenko, Long-time behaviour of strong solutions of retarded nonlinear PDEs,, Comm. PDEs, 22 (1997), 1453. doi: 10.1080/03605309708821307.

[13]

A. Chambolle, B. Desjardins, M. Esteban and C. Grandmont, Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate,, J. Math. Fluid Mech., 7 (2005), 368. doi: 10.1007/s00021-004-0121-y.

[14]

A. J. Chorin and J. E. Marsden, A Mathematical Introduction to Fluid Mechanics,, 3rd edition, (1993).

[15]

I. Chueshov, On a system of equations with delay that arises in aero-elasticity,, (in Russian) Teor. Funktsii Funktsional. Anal. i Prilozhen, 58 (1990), 123. doi: 10.1007/BF01097291.

[16]

I. Chueshov, Introduction to the Theory of Infinite Dimensional Dissipative Systems,, (in Russian) Acta, (1999).

[17]

I. Chueshov, Dynamics of von Karman plate in a potential flow of gas: Rigorous results and unsolved problems,, in Proceedings of the 16th IMACS World Congress, (2000), 1.

[18]

I. Chueshov, Dynamics of a nonlinear elastic plate interacting with a linearized compressible viscous fluid,, Nonlinear Analysis: Theory, 95 (2014), 650. doi: 10.1016/j.na.2013.10.018.

[19]

I. Chueshov, Interaction of an elastic plate with a linearized inviscid incompressible fluid,, Commun. Pure Appl. Anal., (2014). doi: 10.1016/j.na.2013.10.018.

[20]

I. Chueshov and I. Lasiecka, Attractors for second-order evolution equations with a nonlinear damping,, J. of Dyn. and Diff. Equations, 16 (2004), 469. doi: 10.1007/s10884-004-4289-x.

[21]

I. Chueshov and I. Lasiecka, Long-time behavior of second-order evolutions with nonlinear damping,, Mem. Amer. Math. Soc., 195 (2008). doi: 10.1090/memo/0912.

[22]

I. Chueshov and I. Lasiecka, Von Karman Evolution Equations. Well-posedness and Long-Time Dynamics,, Springer Monographs in Mathematics, (2010). doi: 10.1007/978-0-387-87712-9.

[23]

I. Chueshov and I. Lasiecka, Generation of a semigroup and hidden regularity in nonlinear subsonic flow-structure interactions with absorbing boundary conditions,, Jour. Abstr. Differ. Equ. Appl., 3 (2012), 1.

[24]

I. Chueshov, I. Lasiecka and J. T. Webster, Attractors for delayed, non-rotational von Karman plates with applications to flow-structure interactions without any damping,, submitted, (2012).

[25]

I. Chueshov, I. Lasiecka and J. T. Webster, Evolution semigroups for supersonic flow-plate interactions,, J. of Diff. Eqs., 254 (2013), 1741. doi: 10.1016/j.jde.2012.11.009.

[26]

I. Chueshov and A. Rezounenko, Global attractors for a class of retarded quasilinear partial differential equations,, C. R. Acad. Sci. Paris, 321 (1995), 607.

[27]

I. Chueshov and I. Ryzhkova, A global attractor for a fluid-plate interaction model,, Comm. Pure Appl. Anal., 12 (2013), 1635. doi: 10.3934/cpaa.2013.12.1635.

[28]

I. Chueshov and I. Ryzhkova, Unsteady interaction of a viscous fluid with an elastic shell modeled by full von Karman equations,, J. Diff. Eqs., 254 (2013), 1833. doi: 10.1016/j.jde.2012.11.006.

[29]

I. Chueshov and I. Ryzhkova, On interaction of an elastic wall with a Poiseuille-type flow,, Ukrainian Mathematical J., 65 (2013), 158. doi: 10.1007/s11253-013-0771-0.

[30]

I. Chueshov and I. Ryzhkova, Well-posedness and long time behavior for a class of fluid-plate interaction models,, in System Modeling and Optimization. 25th IFIP TC7 Conference, (2011), 12. doi: 10.1007/978-3-642-36062-6_33.

[31]

P. Ciarlet and P. Rabier, Les Équations de Von Kármán,, Lecture Notes in Mathematics, (1980).

[32]

C. Mei, K. Abdel-Motagaly and R. Chen, Review of nonlinear panel flutter at supersonic and hypersonic speeds,, Appl. Mech. Rev., 52 (1999), 321.

[33]

K. F. Clancey, On finite Hilbert transforms,, Transactions AMS, 212 (1975), 347. doi: 10.1090/S0002-9947-1975-0377598-5.

[34]

D. G. Crighton, The Kutta condition in unsteady flow,, Ann. Rev. Fluid Mech., 17 (1985), 411. doi: 10.1146/annurev.fluid.17.1.411.

[35]

O. Diekmann, S. van Gils, S. Lunel and H. O. Walther, Delay Equations,, Springer, (1995).

[36]

E. Dowell, Nonlinear oscillations of a fluttering plate, I and II,, AIAA J., 4 (1966), 1267.

[37]

E. Dowell, Panel flutter-A review of the aeroelastic stability of plates and shells,, AIAA Journal, 8 (1970), 385.

[38]

E. Dowell, O. Bendiksen, J. Edwards and T. Strganac, Transonic Nonlinear Aeroelasticity,, Encyclopedia of Aerospace Engineering, (2003). doi: 10.1002/9780470686652.eae151.

[39]

, E. Dowell,, Private Communication., ().

[40]

E. Dowell, A Modern Course in Aeroelasticity,, Kluwer Academic Publishers, (2004).

[41]

C. Eloy, C. Souilliez and L. Schouveiler, Flutter of a rectangular plate,, J. Fluids and Structures, 23 (2007), 904. doi: 10.1016/j.jfluidstructs.2007.02.002.

[42]

A. Favini, M. Horn, I. Lasiecka and D. Tataru, Global existence, uniqueness and regularity of solutions to a von Karman system with nonlinear boundary dissipation,, Diff. Int. Eqs, 9 (1966), 267.

[43]

W. Frederiks, H. C. J. Hilbering and J. A. Sparenberg, On the Kutta condition for the flow along a semi-infinite elastic plate,, J. Engin. Math., 20 (1986), 27. doi: 10.1007/BF00039321.

[44]

P. G. Geredeli, I. Lasiecka and J. T. Webster, Smooth attractors of finite dimension for von Karman evolutions with nonlinear damping localized in a boundary layer,, J. of Diff. Eqs., 254 (2013), 1193. doi: 10.1016/j.jde.2012.10.016.

[45]

D. H. Hodges and G. A. Pierce, Introduction to Structural Dynamics and Aeroelasticity,, Cambridge Univ. Press, (2002). doi: 10.1115/1.1566393.

[46]

P. Holmes and J. Marsden, Bifurcation to divergence and flutter in flow-induced oscillations: an infinite dimensional analysis,, Automatica, 14 (1978), 367. doi: 10.1016/0005-1098(78)90036-5.

[47]

M. Ignatova, I. Kukavica, I. Lasiecka and A. Tuffaha, On well-posedness for a free boundary fluid-structure model,, J. of Math. Phys., 53 (2012), 115624. doi: 10.1063/1.4766724.

[48]

T. Von Kármán, Festigkeitsprobleme in Maschinenbau,, Encyklopedie der Mathematischen Wissenschaften, (1910), 348.

[49]

A. K. Khanmmamedov, Global attractors for von Karman equations with non-linear dissipation,, J. Math. Anal. Appl., 318 (2006), 92. doi: 10.1016/j.jmaa.2005.05.031.

[50]

A. Kornecki, E. H. Dowell and J. O'Brien, On the aeroelastic instability of two-dimensional panes in uniform incompressible flow,, 47 (1976), 47 (1976), 163.

[51]

E. A. Krasil'shchikova, The Thin Wing in a Compressible Flow,, (in Russian) {Nauka}, (1978).

[52]

O. Ladyzhenskaya, Attractors for Semigroups and Evolution Equations,, Cambridge University Press, (1991). doi: 10.1017/CBO9780511569418.

[53]

J. Lagnese, Boundary Stabilization of Thin Plates,, SIAM, (1989). doi: 10.1137/1.9781611970821.

[54]

L. Landau and E. Lifshitz, Course of Theoretical Physics. Vol. 6. Fluid Mechanics,, Pergamon Press, (1963).

[55]

I. Lasiecka, Mathematical Control Theory of Coupled PDE's,, CMBS-NSF Lecture Notes, (2002). doi: 10.1137/1.9780898717099.

[56]

I. Lasiecka, J. L. Lions and R. Triggiani, Nonhomogenuous boundary value problems for second order hyperbolic operators,, J. Math. Pure et Appliques, 65 (1986), 149.

[57]

I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations, Vol. I, II,, Cambridge University Press, (2000).

[58]

I. Lasiecka and J. T. Webster, Generation of bounded semigroups in nonlinear flow-structure interactions with boundary damping,, Math. Methods in App. Sc., 36 (2013), 1995. doi: 10.1002/mma.1518.

[59]

I. Lasiecka and J. T. Webster, Long-time dynamics and control of subsonic flow-structure interactions,, Proceedings of the 2012 American Control Conference, (2012).

[60]

I. Laseicka and J. T. Webster, Eliminating flutter for clamped von Karman plates immersed in subsonic flows,, Discrete Contin. Dyn. Syst. Ser. S, (2014).

[61]

E. Livne, Future of Airplane Aeroelasticity,, J. of Aircraft, 40 (2003), 1066. doi: 10.2514/2.7218.

[62]

S. Miyatake, Mixed problem for hyperbolic equation of second order,, J. Math. Kyoto Univ., 13 (1973), 435.

[63]

S. Okada and D. Elliott, The finite Hilbert transform in $L_2$,, Math. Nachr., 153 (1991), 43. doi: 10.1002/mana.19911530105.

[64]

I. Ryzhkova, Stabilization of a von Karman plate in the presence of thermal effects in a subsonic potential flow of gas,, J. Math. Anal. and Appl., 294 (2004), 462. doi: 10.1016/j.jmaa.2004.02.021.

[65]

I. Ryzhkova, Dynamics of a thermoelastic von Karman plate in a subsonic gas flow,, Zeitschrift Ang. Math. Phys., 58 (2007), 246. doi: 10.1007/s00033-006-0080-7.

[66]

M. Shubov, Riesz basis property of mode shapes for aircraft wing model (subsonic case),, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 462 (2006), 607. doi: 10.1098/rspa.2005.1579.

[67]

M. Shubov, Solvability of reduced Possio integral equation in theoretical aeroelasticity,, Adv. Diff. Eqs., 15 (2010), 801.

[68]

D. Tataru, On the regularity of boundary traces for the wave equation., Ann. Scuola Normale. Sup. di Pisa., 26 (1998), 185.

[69]

R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics,, Springer-Verlag, (1988). doi: 10.1007/978-1-4684-0313-8.

[70]

F. G. Tricomi, Integral Equations,, Interscience Publishers Inc., (1957).

[71]

V. V. Vedeneev, Effect of damping on flutter of simply supported and clamped panels at low supersonic speeds,, Journal of Fluids and Structures, 40 (2013), 366. doi: 10.1016/j.jfluidstructs.2013.04.004.

[72]

J. Wu, Theory and Applications of Partial Functional Differential Equations,, Springer, (1996). doi: 10.1007/978-1-4612-4050-1.

[73]

J. T. Webster, Weak and strong solutions of a nonlinear subsonic flow-structure interaction: semigroup approach,, Nonlinear Analysis, 74 (2011), 3123. doi: 10.1016/j.na.2011.01.028.

[74]

H. Widom, Integral Equations in $L_p$,, Transactions AMS, 97 (1960), 131.

[1]

George Avalos, Roberto Triggiani. Semigroup well-posedness in the energy space of a parabolic-hyperbolic coupled Stokes-Lamé PDE system of fluid-structure interaction. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 417-447. doi: 10.3934/dcdss.2009.2.417

[2]

Changxing Miao, Bo Zhang. Global well-posedness of the Cauchy problem for nonlinear Schrödinger-type equations. Discrete & Continuous Dynamical Systems - A, 2007, 17 (1) : 181-200. doi: 10.3934/dcds.2007.17.181

[3]

Takafumi Akahori. Low regularity global well-posedness for the nonlinear Schrödinger equation on closed manifolds. Communications on Pure & Applied Analysis, 2010, 9 (2) : 261-280. doi: 10.3934/cpaa.2010.9.261

[4]

Daniela De Silva, Nataša Pavlović, Gigliola Staffilani, Nikolaos Tzirakis. Global well-posedness for a periodic nonlinear Schrödinger equation in 1D and 2D. Discrete & Continuous Dynamical Systems - A, 2007, 19 (1) : 37-65. doi: 10.3934/dcds.2007.19.37

[5]

Zihua Guo, Yifei Wu. Global well-posedness for the derivative nonlinear Schrödinger equation in $H^{\frac 12} (\mathbb{R} )$. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 257-264. doi: 10.3934/dcds.2017010

[6]

Daniela De Silva, Nataša Pavlović, Gigliola Staffilani, Nikolaos Tzirakis. Global well-posedness for the $L^2$ critical nonlinear Schrödinger equation in higher dimensions. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1023-1041. doi: 10.3934/cpaa.2007.6.1023

[7]

Yonggeun Cho, Gyeongha Hwang, Tohru Ozawa. Global well-posedness of critical nonlinear Schrödinger equations below $L^2$. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1389-1405. doi: 10.3934/dcds.2013.33.1389

[8]

Benjamin Dodson. Global well-posedness and scattering for the defocusing, cubic nonlinear Schrödinger equation when $n = 3$ via a linear-nonlinear decomposition. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1905-1926. doi: 10.3934/dcds.2013.33.1905

[9]

John R. Tucker. Attractors and kernels: Linking nonlinear PDE semigroups to harmonic analysis state-space decomposition. Conference Publications, 2001, 2001 (Special) : 366-370. doi: 10.3934/proc.2001.2001.366

[10]

Jerry Bona, Hongqiu Chen. Well-posedness for regularized nonlinear dispersive wave equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (4) : 1253-1275. doi: 10.3934/dcds.2009.23.1253

[11]

Hartmut Pecher. Local well-posedness for the nonlinear Dirac equation in two space dimensions. Communications on Pure & Applied Analysis, 2014, 13 (2) : 673-685. doi: 10.3934/cpaa.2014.13.673

[12]

Giuseppe Floridia. Well-posedness for a class of nonlinear degenerate parabolic equations. Conference Publications, 2015, 2015 (special) : 455-463. doi: 10.3934/proc.2015.0455

[13]

Zhaohui Huo, Boling Guo. The well-posedness of Cauchy problem for the generalized nonlinear dispersive equation. Discrete & Continuous Dynamical Systems - A, 2005, 12 (3) : 387-402. doi: 10.3934/dcds.2005.12.387

[14]

Tristan Roy. Adapted linear-nonlinear decomposition and global well-posedness for solutions to the defocusing cubic wave equation on $\mathbb{R}^{3}$. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1307-1323. doi: 10.3934/dcds.2009.24.1307

[15]

Thomas Y. Hou, Congming Li. Global well-posedness of the viscous Boussinesq equations. Discrete & Continuous Dynamical Systems - A, 2005, 12 (1) : 1-12. doi: 10.3934/dcds.2005.12.1

[16]

Nikolaos Bournaveas. Local well-posedness for a nonlinear dirac equation in spaces of almost critical dimension. Discrete & Continuous Dynamical Systems - A, 2008, 20 (3) : 605-616. doi: 10.3934/dcds.2008.20.605

[17]

Giulio Schimperna, Antonio Segatti, Ulisse Stefanelli. Well-posedness and long-time behavior for a class of doubly nonlinear equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 15-38. doi: 10.3934/dcds.2007.18.15

[18]

Louis Tebou. Well-posedness and stabilization of an Euler-Bernoulli equation with a localized nonlinear dissipation involving the $p$-Laplacian. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2315-2337. doi: 10.3934/dcds.2012.32.2315

[19]

Hartmut Pecher. Corrigendum of "Local well-posedness for the nonlinear Dirac equation in two space dimensions". Communications on Pure & Applied Analysis, 2015, 14 (2) : 737-742. doi: 10.3934/cpaa.2015.14.737

[20]

Giovanna Bonfanti, Fabio Luterotti. A well-posedness result for irreversible phase transitions with a nonlinear heat flux law. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 331-351. doi: 10.3934/dcdss.2013.6.331

2016 Impact Factor: 0.781

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]