2014, 1(1): 177-189. doi: 10.3934/jcd.2014.1.177

On the consistency of ensemble transform filter formulations

1. 

Universität Potsdam, Institut für Mathematik, Am Neuen Palais 10, D-14469 Potsdam, Germany

2. 

Korea Institute of Atmospheric Prediction Systems, 4F Korea Computer Bldg., 35 Boramae-ro 5-gil, Dongjak-gu, Seoul 156-849, South Korea

Received  October 2011 Revised  July 2012 Published  April 2014

In this paper, we consider the data assimilation problem for perfect differential equation models without model error and for either continuous or intermittent observational data. The focus will be on the popular class of ensemble Kalman filters which rely on a Gaussian approximation in the data assimilation step. We discuss the impact of this approximation on the temporal evolution of the ensemble mean and covariance matrix. We also discuss options for reducing arising inconsistencies, which are found to be more severe for the intermittent data assimilation problem. Inconsistencies can, however, not be completely eliminated due to the classic moment closure problem. It is also found for the Lorenz-63 model that the proposed corrections only improve the filter performance for relatively large ensemble sizes.
Citation: Sebastian Reich, Seoleun Shin. On the consistency of ensemble transform filter formulations. Journal of Computational Dynamics, 2014, 1 (1) : 177-189. doi: 10.3934/jcd.2014.1.177
References:
[1]

J. Amezcua, E. Kalnay, K. Ide and S. Reich, Ensemble transform Kalman-Bucy filters,, Q. J. Royal Meteorological Soc., (2013). doi: 10.1002/qj.2186.

[2]

J. Anderson and S. Anderson, A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts,, Mon. Wea. Rev., 127 (1999), 2741. doi: 10.1175/1520-0493(1999)127<2741:AMCIOT>2.0.CO;2.

[3]

A. Bain and D. Crisan, Fundamentals of Stochastic Filtering, vol. 60 of Stochastic modelling and applied probability,, Springer-Verlag, (2009).

[4]

K. Bergemann, G. Gottwald and S. Reich, Ensemble propagation and continuous matrix factorization algorithms,, Q. J. R. Meteorological Soc., 135 (2009), 1560. doi: 10.1002/qj.457.

[5]

K. Bergemann and S. Reich, A localization technique for ensemble Kalman filters,, Q. J. R. Meteorological Soc., 136 (2010), 701. doi: 10.1002/qj.591.

[6]

K. Bergemann and S. Reich, A mollified ensemble Kalman filter,, Q. J. R. Meteorological Soc., 136 (2010), 1636. doi: 10.1002/qj.672.

[7]

K. Bergemann and S. Reich, An ensemble Kalman-Bucy filter for continuous data assimilation,, Meteorolog. Zeitschrift, 21 (2012), 213. doi: 10.1127/0941-2948/2012/0307.

[8]

D. Crisan and J. Xiong, Approximate McKean-Vlasov representation for a class of SPDEs,, Stochastics, 82 (2010), 53. doi: 10.1080/17442500902723575.

[9]

D. Crisan and J. Xiong, Numerical solution for a class of SPDEs over bounded domains,, Stochastics, (2013). doi: 10.1051/proc:071916.

[10]

G. Evensen, Data Assimilation. The Ensemble Kalman Filter,, Springer-Verlag, (2006). doi: 10.1007/978-3-642-03711-5.

[11]

A. Jazwinski, Stochastic Processes and Filtering Theory,, Academic Press, (1970).

[12]

J. Lei and P. Bickel, A moment matching ensemble filter for nonlinear and non-Gaussian data assimilation,, Mon. Weath. Rev., 139 (2011), 3964. doi: 10.1175/2011MWR3553.1.

[13]

E. Lorenz, Deterministic non-periodic flows,, J. Atmos. Sci., 20 (1963), 130.

[14]

S. Reich, A dynamical systems framework for intermittent data assimilation,, BIT Numer Math, 51 (2011), 235. doi: 10.1007/s10543-010-0302-4.

[15]

S. Reich, A Gaussian mixture ensemble transform filter,, Q. J. R. Meterolog. Soc., 138 (2012), 222. doi: 10.1002/qj.898.

[16]

M. Tippett, J. Anderson, G. Bishop, T. Hamill and J. Whitaker, Ensemble square root filters,, Mon. Wea. Rev., 131 (2003), 1485. doi: 10.1175/1520-0493(2003)131<1485:ESRF>2.0.CO;2.

[17]

C. Villani, Topics in Optimal Transportation,, American Mathematical Society, (2003). doi: 10.1007/b12016.

[18]

X. Xiong, I. Navon and B. Uzungoglu, A note on the particle filter with posterior Gaussian resampling,, Tellus, 58 (2006), 456. doi: 10.1111/j.1600-0870.2006.00185.x.

[19]

T. Yang, P. Mehta and S. Meyn, Feedback particle filter,, IEEE Trans. on Automatic Control, 58 (2013), 2465. doi: 10.1109/TAC.2013.2258825.

show all references

References:
[1]

J. Amezcua, E. Kalnay, K. Ide and S. Reich, Ensemble transform Kalman-Bucy filters,, Q. J. Royal Meteorological Soc., (2013). doi: 10.1002/qj.2186.

[2]

J. Anderson and S. Anderson, A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts,, Mon. Wea. Rev., 127 (1999), 2741. doi: 10.1175/1520-0493(1999)127<2741:AMCIOT>2.0.CO;2.

[3]

A. Bain and D. Crisan, Fundamentals of Stochastic Filtering, vol. 60 of Stochastic modelling and applied probability,, Springer-Verlag, (2009).

[4]

K. Bergemann, G. Gottwald and S. Reich, Ensemble propagation and continuous matrix factorization algorithms,, Q. J. R. Meteorological Soc., 135 (2009), 1560. doi: 10.1002/qj.457.

[5]

K. Bergemann and S. Reich, A localization technique for ensemble Kalman filters,, Q. J. R. Meteorological Soc., 136 (2010), 701. doi: 10.1002/qj.591.

[6]

K. Bergemann and S. Reich, A mollified ensemble Kalman filter,, Q. J. R. Meteorological Soc., 136 (2010), 1636. doi: 10.1002/qj.672.

[7]

K. Bergemann and S. Reich, An ensemble Kalman-Bucy filter for continuous data assimilation,, Meteorolog. Zeitschrift, 21 (2012), 213. doi: 10.1127/0941-2948/2012/0307.

[8]

D. Crisan and J. Xiong, Approximate McKean-Vlasov representation for a class of SPDEs,, Stochastics, 82 (2010), 53. doi: 10.1080/17442500902723575.

[9]

D. Crisan and J. Xiong, Numerical solution for a class of SPDEs over bounded domains,, Stochastics, (2013). doi: 10.1051/proc:071916.

[10]

G. Evensen, Data Assimilation. The Ensemble Kalman Filter,, Springer-Verlag, (2006). doi: 10.1007/978-3-642-03711-5.

[11]

A. Jazwinski, Stochastic Processes and Filtering Theory,, Academic Press, (1970).

[12]

J. Lei and P. Bickel, A moment matching ensemble filter for nonlinear and non-Gaussian data assimilation,, Mon. Weath. Rev., 139 (2011), 3964. doi: 10.1175/2011MWR3553.1.

[13]

E. Lorenz, Deterministic non-periodic flows,, J. Atmos. Sci., 20 (1963), 130.

[14]

S. Reich, A dynamical systems framework for intermittent data assimilation,, BIT Numer Math, 51 (2011), 235. doi: 10.1007/s10543-010-0302-4.

[15]

S. Reich, A Gaussian mixture ensemble transform filter,, Q. J. R. Meterolog. Soc., 138 (2012), 222. doi: 10.1002/qj.898.

[16]

M. Tippett, J. Anderson, G. Bishop, T. Hamill and J. Whitaker, Ensemble square root filters,, Mon. Wea. Rev., 131 (2003), 1485. doi: 10.1175/1520-0493(2003)131<1485:ESRF>2.0.CO;2.

[17]

C. Villani, Topics in Optimal Transportation,, American Mathematical Society, (2003). doi: 10.1007/b12016.

[18]

X. Xiong, I. Navon and B. Uzungoglu, A note on the particle filter with posterior Gaussian resampling,, Tellus, 58 (2006), 456. doi: 10.1111/j.1600-0870.2006.00185.x.

[19]

T. Yang, P. Mehta and S. Meyn, Feedback particle filter,, IEEE Trans. on Automatic Control, 58 (2013), 2465. doi: 10.1109/TAC.2013.2258825.

[1]

Junyoung Jang, Kihoon Jang, Hee-Dae Kwon, Jeehyun Lee. Feedback control of an HBV model based on ensemble kalman filter and differential evolution. Mathematical Biosciences & Engineering, 2018, 15 (3) : 667-691. doi: 10.3934/mbe.2018030

[2]

Alexander Bibov, Heikki Haario, Antti Solonen. Stabilized BFGS approximate Kalman filter. Inverse Problems & Imaging, 2015, 9 (4) : 1003-1024. doi: 10.3934/ipi.2015.9.1003

[3]

Russell Johnson, Carmen Núñez. The Kalman-Bucy filter revisited. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 4139-4153. doi: 10.3934/dcds.2014.34.4139

[4]

Xiaoying Han, Jinglai Li, Dongbin Xiu. Error analysis for numerical formulation of particle filter. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1337-1354. doi: 10.3934/dcdsb.2015.20.1337

[5]

Andrea Arnold, Daniela Calvetti, Erkki Somersalo. Vectorized and parallel particle filter SMC parameter estimation for stiff ODEs. Conference Publications, 2015, 2015 (special) : 75-84. doi: 10.3934/proc.2015.0075

[6]

Qifeng Cheng, Xue Han, Tingting Zhao, V S Sarma Yadavalli. Improved particle swarm optimization and neighborhood field optimization by introducing the re-sampling step of particle filter. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-22. doi: 10.3934/jimo.2018038

[7]

Laura Martín-Fernández, Gianni Gilioli, Ettore Lanzarone, Joaquín Míguez, Sara Pasquali, Fabrizio Ruggeri, Diego P. Ruiz. A Rao-Blackwellized particle filter for joint parameter estimation and biomass tracking in a stochastic predator-prey system. Mathematical Biosciences & Engineering, 2014, 11 (3) : 573-597. doi: 10.3934/mbe.2014.11.573

[8]

Alexandre J. Chorin, Fei Lu, Robert N. Miller, Matthias Morzfeld, Xuemin Tu. Sampling, feasibility, and priors in data assimilation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4227-4246. doi: 10.3934/dcds.2016.36.4227

[9]

Hai Huyen Dam, Kok Lay Teo. Variable fractional delay filter design with discrete coefficients. Journal of Industrial & Management Optimization, 2016, 12 (3) : 819-831. doi: 10.3934/jimo.2016.12.819

[10]

Qiyu Jin, Ion Grama, Quansheng Liu. Convergence theorems for the Non-Local Means filter. Inverse Problems & Imaging, 2018, 12 (4) : 853-881. doi: 10.3934/ipi.2018036

[11]

Débora A. F. Albanez, Maicon J. Benvenutti. Continuous data assimilation algorithm for simplified Bardina model. Evolution Equations & Control Theory, 2018, 7 (1) : 33-52. doi: 10.3934/eect.2018002

[12]

Valerii Maltsev, Michael Pokojovy. On a parabolic-hyperbolic filter for multicolor image noise reduction. Evolution Equations & Control Theory, 2016, 5 (2) : 251-272. doi: 10.3934/eect.2016004

[13]

Kody Law, Abhishek Shukla, Andrew Stuart. Analysis of the 3DVAR filter for the partially observed Lorenz'63 model. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 1061-1078. doi: 10.3934/dcds.2014.34.1061

[14]

Yi Xu, Wenyu Sun. A filter successive linear programming method for nonlinear semidefinite programming problems. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 193-206. doi: 10.3934/naco.2012.2.193

[15]

Abdel-Rahman Hedar, Alaa Fahim. Filter-based genetic algorithm for mixed variable programming. Numerical Algebra, Control & Optimization, 2011, 1 (1) : 99-116. doi: 10.3934/naco.2011.1.99

[16]

Z. G. Feng, Kok Lay Teo, N. U. Ahmed, Yulin Zhao, W. Y. Yan. Optimal fusion of sensor data for Kalman filtering. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 483-503. doi: 10.3934/dcds.2006.14.483

[17]

Issam S. Strub, Julie Percelay, Olli-Pekka Tossavainen, Alexandre M. Bayen. Comparison of two data assimilation algorithms for shallow water flows. Networks & Heterogeneous Media, 2009, 4 (2) : 409-430. doi: 10.3934/nhm.2009.4.409

[18]

Jianling Li, Chunting Lu, Youfang Zeng. A smooth QP-free algorithm without a penalty function or a filter for mathematical programs with complementarity constraints. Numerical Algebra, Control & Optimization, 2015, 5 (2) : 115-126. doi: 10.3934/naco.2015.5.115

[19]

Chunlin Hao, Xinwei Liu. A trust-region filter-SQP method for mathematical programs with linear complementarity constraints. Journal of Industrial & Management Optimization, 2011, 7 (4) : 1041-1055. doi: 10.3934/jimo.2011.7.1041

[20]

K. F. C. Yiu, K. Y. Chan, S. Y. Low, S. Nordholm. A multi-filter system for speech enhancement under low signal-to-noise ratios. Journal of Industrial & Management Optimization, 2009, 5 (3) : 671-682. doi: 10.3934/jimo.2009.5.671

 Impact Factor: 

Metrics

  • PDF downloads (1)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]