2014, 4(3): 365-379. doi: 10.3934/mcrf.2014.4.365

Clarke directional derivatives of regularized gap functions for nonsmooth quasi-variational inequalities

1. 

School of Mathematics, Sichuan University, 610064, Chengdu, China

Received  July 2013 Revised  November 2013 Published  April 2014

In optimization problems, it is significant to study the directional derivatives and subdifferentials of objective functions. Using directional derivatives and subdifferentials of objective functions, we can establish optimality conditions, derive error bound properties, and propose optimal algorithms. In this paper, the upper and lower estimates for the Clarke directional derivatives of a class of marginal functions are established. Employing this result, we obtain the exact formulations of the Clarke directional derivatives of the regularized gap functions for nonsmooth quasi-variational inequalities.
Citation: Haisen Zhang. Clarke directional derivatives of regularized gap functions for nonsmooth quasi-variational inequalities. Mathematical Control & Related Fields, 2014, 4 (3) : 365-379. doi: 10.3934/mcrf.2014.4.365
References:
[1]

A. Auslender, Differential stability in nonconvex and nondifferentiable programming,, Math. Program. Study, 10 (1979), 29. doi: 10.1007/bfb0120841.

[2]

D. P. Bertsekas, A. Nedic and A. E. Ozdaglar, Convex Analysis and Optimization,, Athena Scientific, (2003).

[3]

D. Chan and J. S. Pang, The generalized quasi-variational inequality problem,, Math. Oper. Res., 7 (1982), 211. doi: 10.1287/moor.7.2.211.

[4]

F. H. Clarke, Optimization and Nonsmooth Analysis,, Wiley, (1983). doi: 10.1137/1.9781611971309.

[5]

F. Facchi and J. S. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems,, Vol. I, (2003). doi: 10.1007/b97543.

[6]

M. Fukushima, Equivalent differentiable optimaization problems and descent methods for asymmetric variational inequality problems,, Math. Program., 53 (1992), 99. doi: 10.1007/BF01585696.

[7]

M. Fukushima, A class of gap functions for quasi-variational inequality problems,, J. Indust. Manage. Optim., 3 (2007), 165. doi: 10.3934/jimo.2007.3.165.

[8]

N. Harms, C. Kanzow and O. Stein, Smoothness properties of a regularized gap function for quasi-variational inequalities,, Optim. Methods Softw., 29 (2014), 720. doi: 10.1080/10556788.2013.841694.

[9]

J. -B. Hiriart-Urruty, Approximate first-Order and second-order directional derivatives of a marginal function in convex optimization,, J. Optim. Theory Appl., 48 (1986), 127. doi: 10.1007/bfb0066253.

[10]

W. W. Hogan, Point-to-set maps in mathematical programming,, SIAM review, 15 (1973), 591. doi: 10.1137/1015073.

[11]

W. W. Hogan, Directional derivatives for extremal-value functions with applications to the completely convex case,, Oper. Res., 21 (1973), 188. doi: 10.1287/opre.21.1.188.

[12]

K. Kubota and M. Fukushima, Gap function approach to the generalized Nash equilibrium problem,, J. Optim. Theory Appl., 144 (2010), 511. doi: 10.1007/s10957-009-9614-4.

[13]

G. Li and K. F. Ng, Error bounds of generalized D-gap functions for nonsmooth and nonmonotone variational inequality problems,, SIAM J. Optim., 20 (2009), 667. doi: 10.1137/070696283.

[14]

L. I. Minchenko and P. P. Sakolchik, Hölder behavior of optimal solutions and directional differentiability of marginal functions in nonlinear programming,, J. Optim. Theory Appl., 90 (1996), 555. doi: 10.1007/BF02189796.

[15]

B. S. Mordukhovich, N. M. Nam and N. D. Yen, Subgradients of marginal functions in parametric mathematical programming,, Math. Program., 116 (2009), 369. doi: 10.1007/s10107-007-0120-x.

[16]

K. F. Ng and L. L. Tan, Error bounds of regularized gap functions for nonsmooth variational inequality problems,, Math. Program., 110 (2007), 405. doi: 10.1007/s10107-006-0007-2.

[17]

K. F. Ng and L. L. Tan, D-Gap Functions for nonsmooth variational inequality problems,, J. Optim. Theory Appl., 133 (2007), 77. doi: 10.1007/s10957-007-9193-1.

[18]

J.-M. Peng, Equivalence of variational inequality problems to unconstrained minimization,, Math. program., 78 (1997), 347. doi: 10.1007/BF02614360.

[19]

R. T. Rockafellar, Lagrange multipliers and subderivatives of optimal value functions in nonlinear programming,, Math. Program. Study, 17 (1982), 28. doi: 10.1007/bfb0120958.

[20]

E. M. Stern, Singular Integrals and Differentiability Properties of Functions,, Princeton University Press, (1970).

[21]

K. Taji, On gap functions for quasi-variational inequalities,, Abstract Appl. Anal., 2008 (2008). doi: 10.1155/2008/531361.

[22]

L. L. Tan, Regularized gap functions for nonsmooth variational inequality problems,, J. Math. Anal. Appl., 334 (2007), 1022. doi: 10.1016/j.jmaa.2007.01.025.

[23]

D. E. Ward and G. M. Lee, Upper subderivatives and generalized gradients of the marginal function of a non-Lipschitzian program,, Ann. Oper. Res., 101 (2001), 299. doi: 10.1023/A:1010953431290.

[24]

N. Yamashita, K. Taji and M. Fukushima, Unconstrained optimization reformulations of asymmetric variational inequality problems,, J. Optim. Theory Appl., 92 (1997), 439. doi: 10.1023/A:1022660704427.

show all references

References:
[1]

A. Auslender, Differential stability in nonconvex and nondifferentiable programming,, Math. Program. Study, 10 (1979), 29. doi: 10.1007/bfb0120841.

[2]

D. P. Bertsekas, A. Nedic and A. E. Ozdaglar, Convex Analysis and Optimization,, Athena Scientific, (2003).

[3]

D. Chan and J. S. Pang, The generalized quasi-variational inequality problem,, Math. Oper. Res., 7 (1982), 211. doi: 10.1287/moor.7.2.211.

[4]

F. H. Clarke, Optimization and Nonsmooth Analysis,, Wiley, (1983). doi: 10.1137/1.9781611971309.

[5]

F. Facchi and J. S. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems,, Vol. I, (2003). doi: 10.1007/b97543.

[6]

M. Fukushima, Equivalent differentiable optimaization problems and descent methods for asymmetric variational inequality problems,, Math. Program., 53 (1992), 99. doi: 10.1007/BF01585696.

[7]

M. Fukushima, A class of gap functions for quasi-variational inequality problems,, J. Indust. Manage. Optim., 3 (2007), 165. doi: 10.3934/jimo.2007.3.165.

[8]

N. Harms, C. Kanzow and O. Stein, Smoothness properties of a regularized gap function for quasi-variational inequalities,, Optim. Methods Softw., 29 (2014), 720. doi: 10.1080/10556788.2013.841694.

[9]

J. -B. Hiriart-Urruty, Approximate first-Order and second-order directional derivatives of a marginal function in convex optimization,, J. Optim. Theory Appl., 48 (1986), 127. doi: 10.1007/bfb0066253.

[10]

W. W. Hogan, Point-to-set maps in mathematical programming,, SIAM review, 15 (1973), 591. doi: 10.1137/1015073.

[11]

W. W. Hogan, Directional derivatives for extremal-value functions with applications to the completely convex case,, Oper. Res., 21 (1973), 188. doi: 10.1287/opre.21.1.188.

[12]

K. Kubota and M. Fukushima, Gap function approach to the generalized Nash equilibrium problem,, J. Optim. Theory Appl., 144 (2010), 511. doi: 10.1007/s10957-009-9614-4.

[13]

G. Li and K. F. Ng, Error bounds of generalized D-gap functions for nonsmooth and nonmonotone variational inequality problems,, SIAM J. Optim., 20 (2009), 667. doi: 10.1137/070696283.

[14]

L. I. Minchenko and P. P. Sakolchik, Hölder behavior of optimal solutions and directional differentiability of marginal functions in nonlinear programming,, J. Optim. Theory Appl., 90 (1996), 555. doi: 10.1007/BF02189796.

[15]

B. S. Mordukhovich, N. M. Nam and N. D. Yen, Subgradients of marginal functions in parametric mathematical programming,, Math. Program., 116 (2009), 369. doi: 10.1007/s10107-007-0120-x.

[16]

K. F. Ng and L. L. Tan, Error bounds of regularized gap functions for nonsmooth variational inequality problems,, Math. Program., 110 (2007), 405. doi: 10.1007/s10107-006-0007-2.

[17]

K. F. Ng and L. L. Tan, D-Gap Functions for nonsmooth variational inequality problems,, J. Optim. Theory Appl., 133 (2007), 77. doi: 10.1007/s10957-007-9193-1.

[18]

J.-M. Peng, Equivalence of variational inequality problems to unconstrained minimization,, Math. program., 78 (1997), 347. doi: 10.1007/BF02614360.

[19]

R. T. Rockafellar, Lagrange multipliers and subderivatives of optimal value functions in nonlinear programming,, Math. Program. Study, 17 (1982), 28. doi: 10.1007/bfb0120958.

[20]

E. M. Stern, Singular Integrals and Differentiability Properties of Functions,, Princeton University Press, (1970).

[21]

K. Taji, On gap functions for quasi-variational inequalities,, Abstract Appl. Anal., 2008 (2008). doi: 10.1155/2008/531361.

[22]

L. L. Tan, Regularized gap functions for nonsmooth variational inequality problems,, J. Math. Anal. Appl., 334 (2007), 1022. doi: 10.1016/j.jmaa.2007.01.025.

[23]

D. E. Ward and G. M. Lee, Upper subderivatives and generalized gradients of the marginal function of a non-Lipschitzian program,, Ann. Oper. Res., 101 (2001), 299. doi: 10.1023/A:1010953431290.

[24]

N. Yamashita, K. Taji and M. Fukushima, Unconstrained optimization reformulations of asymmetric variational inequality problems,, J. Optim. Theory Appl., 92 (1997), 439. doi: 10.1023/A:1022660704427.

[1]

Masao Fukushima. A class of gap functions for quasi-variational inequality problems. Journal of Industrial & Management Optimization, 2007, 3 (2) : 165-171. doi: 10.3934/jimo.2007.3.165

[2]

Takeshi Fukao, Nobuyuki Kenmochi. Quasi-variational inequality approach to heat convection problems with temperature dependent velocity constraint. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2523-2538. doi: 10.3934/dcds.2015.35.2523

[3]

Suxiang He, Pan Zhang, Xiao Hu, Rong Hu. A sample average approximation method based on a D-gap function for stochastic variational inequality problems. Journal of Industrial & Management Optimization, 2014, 10 (3) : 977-987. doi: 10.3934/jimo.2014.10.977

[4]

Lori Badea. Multigrid methods for some quasi-variational inequalities. Discrete & Continuous Dynamical Systems - S, 2013, 6 (6) : 1457-1471. doi: 10.3934/dcdss.2013.6.1457

[5]

Yusuke Murase, Risei Kano, Nobuyuki Kenmochi. Elliptic Quasi-variational inequalities and applications. Conference Publications, 2009, 2009 (Special) : 583-591. doi: 10.3934/proc.2009.2009.583

[6]

Yurii Nesterov, Laura Scrimali. Solving strongly monotone variational and quasi-variational inequalities. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1383-1396. doi: 10.3934/dcds.2011.31.1383

[7]

Laura Scrimali. Mixed behavior network equilibria and quasi-variational inequalities. Journal of Industrial & Management Optimization, 2009, 5 (2) : 363-379. doi: 10.3934/jimo.2009.5.363

[8]

Yusuke Murase, Atsushi Kadoya, Nobuyuki Kenmochi. Optimal control problems for quasi-variational inequalities and its numerical approximation. Conference Publications, 2011, 2011 (Special) : 1101-1110. doi: 10.3934/proc.2011.2011.1101

[9]

Nobuyuki Kenmochi. Parabolic quasi-variational diffusion problems with gradient constraints. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 423-438. doi: 10.3934/dcdss.2013.6.423

[10]

Dorina Mitrea, Marius Mitrea, Sylvie Monniaux. The Poisson problem for the exterior derivative operator with Dirichlet boundary condition in nonsmooth domains. Communications on Pure & Applied Analysis, 2008, 7 (6) : 1295-1333. doi: 10.3934/cpaa.2008.7.1295

[11]

A. M. Bagirov, Moumita Ghosh, Dean Webb. A derivative-free method for linearly constrained nonsmooth optimization. Journal of Industrial & Management Optimization, 2006, 2 (3) : 319-338. doi: 10.3934/jimo.2006.2.319

[12]

Sara Munday. On the derivative of the $\alpha$-Farey-Minkowski function. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 709-732. doi: 10.3934/dcds.2014.34.709

[13]

Takeshi Fukao. Variational inequality for the Stokes equations with constraint. Conference Publications, 2011, 2011 (Special) : 437-446. doi: 10.3934/proc.2011.2011.437

[14]

Carlo Sinestrari. Semiconcavity of the value function for exit time problems with nonsmooth target. Communications on Pure & Applied Analysis, 2004, 3 (4) : 757-774. doi: 10.3934/cpaa.2004.3.757

[15]

S. J. Li, Z. M. Fang. On the stability of a dual weak vector variational inequality problem. Journal of Industrial & Management Optimization, 2008, 4 (1) : 155-165. doi: 10.3934/jimo.2008.4.155

[16]

Meina Gao, Jianjun Liu. Quasi-periodic solutions for derivative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2101-2123. doi: 10.3934/dcds.2012.32.2101

[17]

Fangfang Dong, Yunmei Chen. A fractional-order derivative based variational framework for image denoising. Inverse Problems & Imaging, 2016, 10 (1) : 27-50. doi: 10.3934/ipi.2016.10.27

[18]

Changjun Yu, Kok Lay Teo, Liansheng Zhang, Yanqin Bai. A new exact penalty function method for continuous inequality constrained optimization problems. Journal of Industrial & Management Optimization, 2010, 6 (4) : 895-910. doi: 10.3934/jimo.2010.6.895

[19]

Anat Amir. Sharpness of Zapolsky's inequality for quasi-states and Poisson brackets. Electronic Research Announcements, 2011, 18: 61-68. doi: 10.3934/era.2011.18.61

[20]

Liping Zhang, Soon-Yi Wu, Shu-Cherng Fang. Convergence and error bound of a D-gap function based Newton-type algorithm for equilibrium problems. Journal of Industrial & Management Optimization, 2010, 6 (2) : 333-346. doi: 10.3934/jimo.2010.6.333

2017 Impact Factor: 0.542

Metrics

  • PDF downloads (1)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]