2014, 4(3): 289-314. doi: 10.3934/mcrf.2014.4.289

Time optimal control problems for some non-smooth systems

1. 

School of Mathematical Sciences and LMNS, Fudan University, Shanghai 200433

2. 

School of Mathematical Sciences, Fudan University, Shanghai 200433, China

3. 

School of Mathematical Sciences, Fudan University, KLMNS, Shanghai, 200433

Received  September 2013 Revised  November 2013 Published  April 2014

Time optimal control problems for some non-smooth systems in general form are considered. The non-smoothness is caused by singularity. It is proved that Pontryagin's maximum principle holds for at least one optimal relaxed control. Thus, Pontryagin's maximum principle holds when the optimal classical control is a unique optimal relaxed control. By constructing an auxiliary controlled system which admits the original optimal classical control as its unique optimal relaxed control, one get a chance to get Pontryagin's maximum principle for the original optimal classical control. Existence results are also considered.
Citation: Hongwei Lou, Junjie Wen, Yashan Xu. Time optimal control problems for some non-smooth systems. Mathematical Control & Related Fields, 2014, 4 (3) : 289-314. doi: 10.3934/mcrf.2014.4.289
References:
[1]

C. Bandle and H. Brunner, Blowup in diffusion equations: A survey,, J. Comput. Appl. Math., 97 (1998), 3. doi: 10.1016/S0377-0427(98)00100-9.

[2]

C. Y. Chan, New results in quenching,, in World Congress of Nonlinear Analysts '92, (1992), 427.

[3]

C. Y. Chan and H. G. Kaper, Quenching for semilinear singular parabolic problems,, SIAM J. Math. Anal., 20 (1989), 558. doi: 10.1137/0520039.

[4]

M. Escobedo and M. A. Herrero, Boundedness and blow up for a semilinear reaction diffusion system,, J. Differential Equations, 89 (1991), 176. doi: 10.1016/0022-0396(91)90118-S.

[5]

R. Glassey, Blow-up theorems for nonlinear wave-equations,, Math. Z., 132 (1973), 183. doi: 10.1007/BF01213863.

[6]

J. S. Guo and B. Hu, The profile near quenching time for the solution of a singular semilinear heat equation,, Proc. Edinburgh Math. Soc., 40 (1997), 437. doi: 10.1017/S0013091500023932.

[7]

H. Kawarada, On solutions of initial-boundary problem for $u_t=u_{x x}+1/(1-u)$,, Publ. Res. Inst. Math. Sci., 10 (1975), 729. doi: 10.2977/prims/1195191889.

[8]

P. Lin, Quenching time optimal control for some ordinary differential equations,, preprint, ().

[9]

P. Lin and G. Wang, Blowup time optimal control for ordinary differential equations,, SIAM J. Control Optim., 49 (2011), 73. doi: 10.1137/090764232.

[10]

J. Warga, Optimal Control of Differential and Functional Equations,, Academic Press, (1972).

[11]

B. Yordanov and Q. S. Zhang, Finite-time blowup for wave equations with a potential,, SIAM J. Math. Anal., 36 (2005), 1426. doi: 10.1137/S0036141004440198.

[12]

Z. Zhang and B. Hu, Rate estimates of gradient blowup for a heat equation with exponential nonlinearity,, Nonlinear Anal., 72 (2010), 4594. doi: 10.1016/j.na.2010.02.036.

show all references

References:
[1]

C. Bandle and H. Brunner, Blowup in diffusion equations: A survey,, J. Comput. Appl. Math., 97 (1998), 3. doi: 10.1016/S0377-0427(98)00100-9.

[2]

C. Y. Chan, New results in quenching,, in World Congress of Nonlinear Analysts '92, (1992), 427.

[3]

C. Y. Chan and H. G. Kaper, Quenching for semilinear singular parabolic problems,, SIAM J. Math. Anal., 20 (1989), 558. doi: 10.1137/0520039.

[4]

M. Escobedo and M. A. Herrero, Boundedness and blow up for a semilinear reaction diffusion system,, J. Differential Equations, 89 (1991), 176. doi: 10.1016/0022-0396(91)90118-S.

[5]

R. Glassey, Blow-up theorems for nonlinear wave-equations,, Math. Z., 132 (1973), 183. doi: 10.1007/BF01213863.

[6]

J. S. Guo and B. Hu, The profile near quenching time for the solution of a singular semilinear heat equation,, Proc. Edinburgh Math. Soc., 40 (1997), 437. doi: 10.1017/S0013091500023932.

[7]

H. Kawarada, On solutions of initial-boundary problem for $u_t=u_{x x}+1/(1-u)$,, Publ. Res. Inst. Math. Sci., 10 (1975), 729. doi: 10.2977/prims/1195191889.

[8]

P. Lin, Quenching time optimal control for some ordinary differential equations,, preprint, ().

[9]

P. Lin and G. Wang, Blowup time optimal control for ordinary differential equations,, SIAM J. Control Optim., 49 (2011), 73. doi: 10.1137/090764232.

[10]

J. Warga, Optimal Control of Differential and Functional Equations,, Academic Press, (1972).

[11]

B. Yordanov and Q. S. Zhang, Finite-time blowup for wave equations with a potential,, SIAM J. Math. Anal., 36 (2005), 1426. doi: 10.1137/S0036141004440198.

[12]

Z. Zhang and B. Hu, Rate estimates of gradient blowup for a heat equation with exponential nonlinearity,, Nonlinear Anal., 72 (2010), 4594. doi: 10.1016/j.na.2010.02.036.

[1]

Hongwei Lou, Weihan Wang. Optimal blowup/quenching time for controlled autonomous ordinary differential equations. Mathematical Control & Related Fields, 2015, 5 (3) : 517-527. doi: 10.3934/mcrf.2015.5.517

[2]

Zaidong Zhan, Shuping Chen, Wei Wei. A unified theory of maximum principle for continuous and discrete time optimal control problems. Mathematical Control & Related Fields, 2012, 2 (2) : 195-215. doi: 10.3934/mcrf.2012.2.195

[3]

Kim Dang Phung, Gengsheng Wang, Xu Zhang. On the existence of time optimal controls for linear evolution equations. Discrete & Continuous Dynamical Systems - B, 2007, 8 (4) : 925-941. doi: 10.3934/dcdsb.2007.8.925

[4]

Shanjian Tang. A second-order maximum principle for singular optimal stochastic controls. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1581-1599. doi: 10.3934/dcdsb.2010.14.1581

[5]

Yan Wang, Yanxiang Zhao, Lei Wang, Aimin Song, Yanping Ma. Stochastic maximum principle for partial information optimal investment and dividend problem of an insurer. Journal of Industrial & Management Optimization, 2018, 14 (2) : 653-671. doi: 10.3934/jimo.2017067

[6]

Hans Josef Pesch. Carathéodory's royal road of the calculus of variations: Missed exits to the maximum principle of optimal control theory. Numerical Algebra, Control & Optimization, 2013, 3 (1) : 161-173. doi: 10.3934/naco.2013.3.161

[7]

Md. Haider Ali Biswas, Maria do Rosário de Pinho. A nonsmooth maximum principle for optimal control problems with state and mixed constraints - convex case. Conference Publications, 2011, 2011 (Special) : 174-183. doi: 10.3934/proc.2011.2011.174

[8]

Piermarco Cannarsa, Cristina Pignotti, Carlo Sinestrari. Semiconcavity for optimal control problems with exit time. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 975-997. doi: 10.3934/dcds.2000.6.975

[9]

N. Arada, J.-P. Raymond. Time optimal problems with Dirichlet boundary controls. Discrete & Continuous Dynamical Systems - A, 2003, 9 (6) : 1549-1570. doi: 10.3934/dcds.2003.9.1549

[10]

Jérome Lohéac, Jean-François Scheid. Time optimal control for a nonholonomic system with state constraint. Mathematical Control & Related Fields, 2013, 3 (2) : 185-208. doi: 10.3934/mcrf.2013.3.185

[11]

Piermarco Cannarsa, Carlo Sinestrari. On a class of nonlinear time optimal control problems. Discrete & Continuous Dynamical Systems - A, 1995, 1 (2) : 285-300. doi: 10.3934/dcds.1995.1.285

[12]

Luong V. Nguyen. A note on optimality conditions for optimal exit time problems. Mathematical Control & Related Fields, 2015, 5 (2) : 291-303. doi: 10.3934/mcrf.2015.5.291

[13]

Zuzana Chladná. Optimal time to intervene: The case of measles child immunization. Mathematical Biosciences & Engineering, 2018, 15 (1) : 323-335. doi: 10.3934/mbe.2018014

[14]

Piotr Kopacz. A note on time-optimal paths on perturbed spheroid. Journal of Geometric Mechanics, 2018, 10 (2) : 139-172. doi: 10.3934/jgm.2018005

[15]

Shu Dai, Dong Li, Kun Zhao. Finite-time quenching of competing species with constrained boundary evaporation. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1275-1290. doi: 10.3934/dcdsb.2013.18.1275

[16]

James Nolen, Jack Xin. Existence of KPP type fronts in space-time periodic shear flows and a study of minimal speeds based on variational principle. Discrete & Continuous Dynamical Systems - A, 2005, 13 (5) : 1217-1234. doi: 10.3934/dcds.2005.13.1217

[17]

H. O. Fattorini. The maximum principle in infinite dimension. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 557-574. doi: 10.3934/dcds.2000.6.557

[18]

Gastão S. F. Frederico, Delfim F. M. Torres. Noether's symmetry Theorem for variational and optimal control problems with time delay. Numerical Algebra, Control & Optimization, 2012, 2 (3) : 619-630. doi: 10.3934/naco.2012.2.619

[19]

Laurenz Göllmann, Helmut Maurer. Theory and applications of optimal control problems with multiple time-delays. Journal of Industrial & Management Optimization, 2014, 10 (2) : 413-441. doi: 10.3934/jimo.2014.10.413

[20]

David González-Sánchez, Onésimo Hernández-Lerma. On the Euler equation approach to discrete--time nonstationary optimal control problems. Journal of Dynamics & Games, 2014, 1 (1) : 57-78. doi: 10.3934/jdg.2014.1.57

2017 Impact Factor: 0.542

Metrics

  • PDF downloads (3)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]