2014, 4(3): 263-287. doi: 10.3934/mcrf.2014.4.263

Approximate controllability conditions for some linear 1D parabolic systems with space-dependent coefficients

1. 

Aix-Marseille Université, CNRS, Centrale Marseille, Laboratoire d'Analyse Topologie et Probabilités, UMR 7353, 13453 Marseille, France, France

Received  August 2013 Revised  December 2013 Published  April 2014

In this article we are interested in the controllability with one single control force of parabolic systems with space-dependent zero-order coupling terms. We particularly want to emphasize that, surprisingly enough for parabolic problems, the geometry of the control domain can have an important influence on the controllability properties of the system, depending on the structure of the coupling terms.
    Our analysis is mainly based on a criterion given by Fattorini in [12] (and systematically used in [22] for instance), that reduces the problem to the study of a unique continuation property for elliptic systems. We provide several detailed examples of controllable and non-controllable systems. This work gives theoretical justifications of some numerical observations described in [9].
Citation: Franck Boyer, Guillaume Olive. Approximate controllability conditions for some linear 1D parabolic systems with space-dependent coefficients. Mathematical Control & Related Fields, 2014, 4 (3) : 263-287. doi: 10.3934/mcrf.2014.4.263
References:
[1]

F. Alabau-Boussouira, Controllability of cascade coupled systems of multi-dimensional evolution PDEs by a reduced number of controls,, C. R. Math. Acad. Sci. Paris, 350 (2012), 577. doi: 10.1016/j.crma.2012.05.009.

[2]

F. Alabau-Boussouira and M. Léautaud, Indirect controllability of locally coupled wave-type systems and applications,, J. Math. Pures Appl., 99 (2013), 544. doi: 10.1016/j.matpur.2012.09.012.

[3]

G. Alessandrini and L. Escauriaza, Null-controllability of one-dimensional parabolic equations,, ESAIM Control Optim. Calc. Var., 14 (2008), 284. doi: 10.1051/cocv:2007055.

[4]

F. Ammar-Khodja, A. Benabdallah, C. Dupaix and M. González-Burgos, A generalization of the Kalman rank condition for time-dependent coupled linear parabolic systems,, Differ. Equ. Appl., 1 (2009), 427. doi: 10.7153/dea-01-24.

[5]

F. Ammar-Khodja, A. Benabdallah, C. Dupai and M. González-Burgos, A Kalman rank condition for the localized distributed controllability of a class of linear parabolic systems,, J. Evol. Equ., 9 (2009), 267. doi: 10.1007/s00028-009-0008-8.

[6]

F. Ammar-Khodja, A. Benabdallah, M. González-Burgos and L. de Teresa, Recent results on the controllability of linear coupled parabolic problems: A survey,, Math. Control Relat. Fields, 1 (2011), 267. doi: 10.3934/mcrf.2011.1.267.

[7]

F. Ammar-Khodja, A. Benabdallah, M. González-Burgos and L. de Teresa, Minimal time for the null controllability of parabolic systems: The effect of the condensation index of complex sequences,, preprint, (2013).

[8]

A. Benabdallah, M. Cristofol, P. Gaitan and L. de Teresa, Controllability to trajectories for some parabolic systems of three and two equations by one control force,, Math. Control Relat. Fields, 4 (2014), 17. doi: 10.3934/mcrf.2014.4.17.

[9]

F. Boyer, On the penalized hum approach and its applications to the numerical approximation of null-controls for parabolic problems,, ESAIM Proceedings, 41 (2013), 15. doi: 10.1051/proc/201341002.

[10]

M. Badra and T. Takahashi, On the Fattorini criterion for approximate controllability and stabilizability of parabolic systems,, preprint, (2012).

[11]

J.-M. Coron, Control and Nonlinearity,, Mathematical Surveys and Monographs, (2007).

[12]

H. O. Fattorini, Some remarks on complete controllability,, SIAM J. Control, 4 (1966), 686. doi: 10.1137/0304048.

[13]

E. Fernández-Cara, M. González-Burgos and L. de Teresa, Boundary controllability of parabolic coupled equations,, J. Funct. Anal., 259 (2010), 1720. doi: 10.1016/j.jfa.2010.06.003.

[14]

A. Fursikov and O. Yu Imanuvilov, Controllability of Evolution Equations,, Lecture Notes, (1996).

[15]

M. González-Burgos and L. de Teresa, Controllability results for cascade systems of $m$ coupled parabolic {PDE}s by one control force,, Port. Math., 67 (2010), 91. doi: 10.4171/PM/1859.

[16]

J.-M. Ghidaglia, Some backward uniqueness results,, Nonlinear Anal., 10 (1986), 777. doi: 10.1016/0362-546X(86)90037-4.

[17]

O. Kavian and L. de Teresa, Unique continuation principle for systems of parabolic equations,, ESAIM Control Optim. Calc. Var., 16 (2010), 247. doi: 10.1051/cocv/2008077.

[18]

F. Luca and L. de Teresa, Control of coupled parabolic systems and Diophantine approximations,, S$\vec e$MA J., 61 (2013), 1. doi: 10.1007/s40324-013-0004-3.

[19]

A. S. Markus, Introduction to the Spectral Theory of Polynomial Operator Pencils,, Translated from the Russian by H. H. McFaden, (1988).

[20]

K. Mauffrey, On the null controllability of a $3\times3$ parabolic system with non-constant coefficients by one or two control forces,, J. Math. Pures Appl., 99 (2013), 187. doi: 10.1016/j.matpur.2012.06.010.

[21]

S. Mizohata, Unicité du prolongement des solutions pour quelques opérateurs différentiels paraboliques,, Mem. Coll. Sci. Univ. Kyoto Ser. A Math., 31 (1958), 219.

[22]

G. Olive, Boundary approximate controllability of some linear parabolic systems,, Evol. Equ. Control Theory, 3 (2014), 167. doi: 10.3934/eect.2014.3.167.

[23]

L. Rosier and L. de Teresa, Exact controllability of a cascade system of conservative equations,, C. R. Math. Acad. Sci. Paris, 349 (2011), 291. doi: 10.1016/j.crma.2011.01.014.

show all references

References:
[1]

F. Alabau-Boussouira, Controllability of cascade coupled systems of multi-dimensional evolution PDEs by a reduced number of controls,, C. R. Math. Acad. Sci. Paris, 350 (2012), 577. doi: 10.1016/j.crma.2012.05.009.

[2]

F. Alabau-Boussouira and M. Léautaud, Indirect controllability of locally coupled wave-type systems and applications,, J. Math. Pures Appl., 99 (2013), 544. doi: 10.1016/j.matpur.2012.09.012.

[3]

G. Alessandrini and L. Escauriaza, Null-controllability of one-dimensional parabolic equations,, ESAIM Control Optim. Calc. Var., 14 (2008), 284. doi: 10.1051/cocv:2007055.

[4]

F. Ammar-Khodja, A. Benabdallah, C. Dupaix and M. González-Burgos, A generalization of the Kalman rank condition for time-dependent coupled linear parabolic systems,, Differ. Equ. Appl., 1 (2009), 427. doi: 10.7153/dea-01-24.

[5]

F. Ammar-Khodja, A. Benabdallah, C. Dupai and M. González-Burgos, A Kalman rank condition for the localized distributed controllability of a class of linear parabolic systems,, J. Evol. Equ., 9 (2009), 267. doi: 10.1007/s00028-009-0008-8.

[6]

F. Ammar-Khodja, A. Benabdallah, M. González-Burgos and L. de Teresa, Recent results on the controllability of linear coupled parabolic problems: A survey,, Math. Control Relat. Fields, 1 (2011), 267. doi: 10.3934/mcrf.2011.1.267.

[7]

F. Ammar-Khodja, A. Benabdallah, M. González-Burgos and L. de Teresa, Minimal time for the null controllability of parabolic systems: The effect of the condensation index of complex sequences,, preprint, (2013).

[8]

A. Benabdallah, M. Cristofol, P. Gaitan and L. de Teresa, Controllability to trajectories for some parabolic systems of three and two equations by one control force,, Math. Control Relat. Fields, 4 (2014), 17. doi: 10.3934/mcrf.2014.4.17.

[9]

F. Boyer, On the penalized hum approach and its applications to the numerical approximation of null-controls for parabolic problems,, ESAIM Proceedings, 41 (2013), 15. doi: 10.1051/proc/201341002.

[10]

M. Badra and T. Takahashi, On the Fattorini criterion for approximate controllability and stabilizability of parabolic systems,, preprint, (2012).

[11]

J.-M. Coron, Control and Nonlinearity,, Mathematical Surveys and Monographs, (2007).

[12]

H. O. Fattorini, Some remarks on complete controllability,, SIAM J. Control, 4 (1966), 686. doi: 10.1137/0304048.

[13]

E. Fernández-Cara, M. González-Burgos and L. de Teresa, Boundary controllability of parabolic coupled equations,, J. Funct. Anal., 259 (2010), 1720. doi: 10.1016/j.jfa.2010.06.003.

[14]

A. Fursikov and O. Yu Imanuvilov, Controllability of Evolution Equations,, Lecture Notes, (1996).

[15]

M. González-Burgos and L. de Teresa, Controllability results for cascade systems of $m$ coupled parabolic {PDE}s by one control force,, Port. Math., 67 (2010), 91. doi: 10.4171/PM/1859.

[16]

J.-M. Ghidaglia, Some backward uniqueness results,, Nonlinear Anal., 10 (1986), 777. doi: 10.1016/0362-546X(86)90037-4.

[17]

O. Kavian and L. de Teresa, Unique continuation principle for systems of parabolic equations,, ESAIM Control Optim. Calc. Var., 16 (2010), 247. doi: 10.1051/cocv/2008077.

[18]

F. Luca and L. de Teresa, Control of coupled parabolic systems and Diophantine approximations,, S$\vec e$MA J., 61 (2013), 1. doi: 10.1007/s40324-013-0004-3.

[19]

A. S. Markus, Introduction to the Spectral Theory of Polynomial Operator Pencils,, Translated from the Russian by H. H. McFaden, (1988).

[20]

K. Mauffrey, On the null controllability of a $3\times3$ parabolic system with non-constant coefficients by one or two control forces,, J. Math. Pures Appl., 99 (2013), 187. doi: 10.1016/j.matpur.2012.06.010.

[21]

S. Mizohata, Unicité du prolongement des solutions pour quelques opérateurs différentiels paraboliques,, Mem. Coll. Sci. Univ. Kyoto Ser. A Math., 31 (1958), 219.

[22]

G. Olive, Boundary approximate controllability of some linear parabolic systems,, Evol. Equ. Control Theory, 3 (2014), 167. doi: 10.3934/eect.2014.3.167.

[23]

L. Rosier and L. de Teresa, Exact controllability of a cascade system of conservative equations,, C. R. Math. Acad. Sci. Paris, 349 (2011), 291. doi: 10.1016/j.crma.2011.01.014.

[1]

Zhongqi Yin. A quantitative internal unique continuation for stochastic parabolic equations. Mathematical Control & Related Fields, 2015, 5 (1) : 165-176. doi: 10.3934/mcrf.2015.5.165

[2]

José G. Llorente. Mean value properties and unique continuation. Communications on Pure & Applied Analysis, 2015, 14 (1) : 185-199. doi: 10.3934/cpaa.2015.14.185

[3]

Brooke L. Hollingsworth, R.E. Showalter. Semilinear degenerate parabolic systems and distributed capacitance models. Discrete & Continuous Dynamical Systems - A, 1995, 1 (1) : 59-76. doi: 10.3934/dcds.1995.1.59

[4]

A. Alexandrou Himonas, Gerard Misiołek, Feride Tiǧlay. On unique continuation for the modified Euler-Poisson equations. Discrete & Continuous Dynamical Systems - A, 2007, 19 (3) : 515-529. doi: 10.3934/dcds.2007.19.515

[5]

Gunther Uhlmann, Jenn-Nan Wang. Unique continuation property for the elasticity with general residual stress. Inverse Problems & Imaging, 2009, 3 (2) : 309-317. doi: 10.3934/ipi.2009.3.309

[6]

Muriel Boulakia. Quantification of the unique continuation property for the nonstationary Stokes problem. Mathematical Control & Related Fields, 2016, 6 (1) : 27-52. doi: 10.3934/mcrf.2016.6.27

[7]

Laurent Bourgeois. Quantification of the unique continuation property for the heat equation. Mathematical Control & Related Fields, 2017, 7 (3) : 347-367. doi: 10.3934/mcrf.2017012

[8]

Guillaume Olive. Boundary approximate controllability of some linear parabolic systems. Evolution Equations & Control Theory, 2014, 3 (1) : 167-189. doi: 10.3934/eect.2014.3.167

[9]

Farid Ammar Khodja, Franz Chouly, Michel Duprez. Partial null controllability of parabolic linear systems. Mathematical Control & Related Fields, 2016, 6 (2) : 185-216. doi: 10.3934/mcrf.2016001

[10]

Felipe Wallison Chaves-Silva, Sergio Guerrero, Jean Pierre Puel. Controllability of fast diffusion coupled parabolic systems. Mathematical Control & Related Fields, 2014, 4 (4) : 465-479. doi: 10.3934/mcrf.2014.4.465

[11]

Ihyeok Seo. Carleman estimates for the Schrödinger operator and applications to unique continuation. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1013-1036. doi: 10.3934/cpaa.2012.11.1013

[12]

Jan Boman. Unique continuation of microlocally analytic distributions and injectivity theorems for the ray transform. Inverse Problems & Imaging, 2010, 4 (4) : 619-630. doi: 10.3934/ipi.2010.4.619

[13]

Mouhamed Moustapha Fall, Veronica Felli. Unique continuation properties for relativistic Schrödinger operators with a singular potential. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5827-5867. doi: 10.3934/dcds.2015.35.5827

[14]

Roberto Triggiani. Unique continuation of boundary over-determined Stokes and Oseen eigenproblems. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 645-677. doi: 10.3934/dcdss.2009.2.645

[15]

Agnid Banerjee. A note on the unique continuation property for fully nonlinear elliptic equations. Communications on Pure & Applied Analysis, 2015, 14 (2) : 623-626. doi: 10.3934/cpaa.2015.14.623

[16]

Thuy N. T. Nguyen. Uniform controllability of semidiscrete approximations for parabolic systems in Banach spaces. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 613-640. doi: 10.3934/dcdsb.2015.20.613

[17]

Amitava Mukhopadhyay, Andrea De Gaetano, Ovide Arino. Modeling the intra-venous glucose tolerance test: A global study for a single-distributed-delay model. Discrete & Continuous Dynamical Systems - B, 2004, 4 (2) : 407-417. doi: 10.3934/dcdsb.2004.4.407

[18]

Qiaoyi Hu, Zhijun Qiao. Analyticity, Gevrey regularity and unique continuation for an integrable multi-component peakon system with an arbitrary polynomial function. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6975-7000. doi: 10.3934/dcds.2016103

[19]

Qiaoyi Hu, Zhijun Qiao. Persistence properties and unique continuation for a dispersionless two-component Camassa-Holm system with peakon and weak kink solutions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2613-2625. doi: 10.3934/dcds.2016.36.2613

[20]

Peng Gao. Carleman estimates and Unique Continuation Property for 1-D viscous Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 169-188. doi: 10.3934/dcds.2017007

2017 Impact Factor: 0.542

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]