2014, 6(1): 1-23. doi: 10.3934/jgm.2014.6.1

Aspects of reduction and transformation of Lagrangian systems with symmetry

1. 

Department of Mathematics, Ghent University, Krijgslaan 281 S22, B9000 Ghent, Belgium, Belgium

2. 

Belgian Institute for Space Aeronomy, Ringlaan 3, B1180 Brussels, Belgium

Received  July 2013 Revised  January 2014 Published  April 2014

This paper contains results on geometric Routh reduction and it is a continuation of a previous paper [7] where a new class of transformations is introduced between Lagrangian systems obtained after Routh reduction. In general, these reduced Lagrangian systems have magnetic force terms and are singular in the sense that the Lagrangian does not depend on some velocity components. The main purpose of this paper is to show that the Routh reduction process itself is entirely captured by the application of such a new transformation on the initial Lagrangian system with symmetry.
Citation: E. García-Toraño Andrés, Bavo Langerock, Frans Cantrijn. Aspects of reduction and transformation of Lagrangian systems with symmetry. Journal of Geometric Mechanics, 2014, 6 (1) : 1-23. doi: 10.3934/jgm.2014.6.1
References:
[1]

R. Abraham and J. E. Marsden, Foundations of Mechanics,, The Benjamin/Cummings Publishing Company, (1978).

[2]

M. Crampin and T. Mestdag, Routh's procedure for non-Abelian symmetry groups,, J. Math. Phys., 49 (2008). doi: 10.1063/1.2885077.

[3]

M. J. Gotay, J. M. Nester and G. Hinds, Presymplectic manifolds and the Dirac-Bergmann theory of constraints,, J. Math. Phys., 19 (1978), 2388. doi: 10.1063/1.523597.

[4]

M. J. Gotay and J. M. Nester, Presymplectic Lagrangian systems I: The constraint algorithm and the equivalence problem,, Ann. Inst. Henri Poincaré, 30 (1979), 129.

[5]

S. M. Jalnapurkar and J. E. Marsden, Reduction of Hamilton's variational principle,, Dynamics and Stability of Systems, 15 (2000), 287. doi: 10.1080/713603744.

[6]

S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, volume I and II,, Interscience Publishers, (1963).

[7]

B. Langerock, E. G. Andrés and F. Cantrijn, Routh reduction and the class of magnetic Lagrangian systems,, Journal Of Mathematical Physics, 53 (2012). doi: 10.1063/1.4723841.

[8]

B. Langerock, F. Cantrijn and J. Vankerschaver, Routhian reduction for quasi-invariant Lagrangians,, J. Math. Phys., 51 (2010). doi: 10.1063/1.3277181.

[9]

B. Langerock and M. C. Lopéz, Routhian reduction for singular Lagrangians,, J. Geom. Meth. Mod. Phys., 7 (2010), 1451. doi: 10.1142/S0219887810004907.

[10]

B. Langerock, T. Mestdag and J. Vankerschaver, Routh reduction by stages,, SIGMA Symmetry Integrability Geom. Methods Appl., 7 (2011). doi: 10.3842/SIGMA.2011.109.

[11]

J. E. Marsden, Lectures on Mechanics,, Cambridge University Press, (1992).

[12]

J. E. Marsden, G. Misiołek, J. P. Ortega, M. Perlmutter and T. S. Ratiu, Hamiltonian Reduction by Stages,, volume 1913 of Lecture Notes in Mathematics. Springer, (1913).

[13]

J. E. Marsden, T. S. Ratiu and J. Scheurle, Reduction theory and the Lagrange-Routh equations,, J. Math. Phys., 41 (2000), 3379. doi: 10.1063/1.533317.

[14]

J. E. Marsden and J. Scheurle, Lagrangian reduction and the double spherical pendulum,, Z. Angew. Math. Phys., 44 (1993), 17. doi: 10.1007/BF00914351.

[15]

P. Morando and S. Sammarco, Variational problems with symmetries: A Pfaffian system approach,, Acta Appl. Math., 120 (2012), 255. doi: 10.1007/s10440-012-9720-4.

[16]

R. W. Sharpe, Differential Geometry,, volume 166 of Graduate Texts in Mathematics. Springer-Verlag, (1997).

show all references

References:
[1]

R. Abraham and J. E. Marsden, Foundations of Mechanics,, The Benjamin/Cummings Publishing Company, (1978).

[2]

M. Crampin and T. Mestdag, Routh's procedure for non-Abelian symmetry groups,, J. Math. Phys., 49 (2008). doi: 10.1063/1.2885077.

[3]

M. J. Gotay, J. M. Nester and G. Hinds, Presymplectic manifolds and the Dirac-Bergmann theory of constraints,, J. Math. Phys., 19 (1978), 2388. doi: 10.1063/1.523597.

[4]

M. J. Gotay and J. M. Nester, Presymplectic Lagrangian systems I: The constraint algorithm and the equivalence problem,, Ann. Inst. Henri Poincaré, 30 (1979), 129.

[5]

S. M. Jalnapurkar and J. E. Marsden, Reduction of Hamilton's variational principle,, Dynamics and Stability of Systems, 15 (2000), 287. doi: 10.1080/713603744.

[6]

S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, volume I and II,, Interscience Publishers, (1963).

[7]

B. Langerock, E. G. Andrés and F. Cantrijn, Routh reduction and the class of magnetic Lagrangian systems,, Journal Of Mathematical Physics, 53 (2012). doi: 10.1063/1.4723841.

[8]

B. Langerock, F. Cantrijn and J. Vankerschaver, Routhian reduction for quasi-invariant Lagrangians,, J. Math. Phys., 51 (2010). doi: 10.1063/1.3277181.

[9]

B. Langerock and M. C. Lopéz, Routhian reduction for singular Lagrangians,, J. Geom. Meth. Mod. Phys., 7 (2010), 1451. doi: 10.1142/S0219887810004907.

[10]

B. Langerock, T. Mestdag and J. Vankerschaver, Routh reduction by stages,, SIGMA Symmetry Integrability Geom. Methods Appl., 7 (2011). doi: 10.3842/SIGMA.2011.109.

[11]

J. E. Marsden, Lectures on Mechanics,, Cambridge University Press, (1992).

[12]

J. E. Marsden, G. Misiołek, J. P. Ortega, M. Perlmutter and T. S. Ratiu, Hamiltonian Reduction by Stages,, volume 1913 of Lecture Notes in Mathematics. Springer, (1913).

[13]

J. E. Marsden, T. S. Ratiu and J. Scheurle, Reduction theory and the Lagrange-Routh equations,, J. Math. Phys., 41 (2000), 3379. doi: 10.1063/1.533317.

[14]

J. E. Marsden and J. Scheurle, Lagrangian reduction and the double spherical pendulum,, Z. Angew. Math. Phys., 44 (1993), 17. doi: 10.1007/BF00914351.

[15]

P. Morando and S. Sammarco, Variational problems with symmetries: A Pfaffian system approach,, Acta Appl. Math., 120 (2012), 255. doi: 10.1007/s10440-012-9720-4.

[16]

R. W. Sharpe, Differential Geometry,, volume 166 of Graduate Texts in Mathematics. Springer-Verlag, (1997).

[1]

Joshua Cape, Hans-Christian Herbig, Christopher Seaton. Symplectic reduction at zero angular momentum. Journal of Geometric Mechanics, 2016, 8 (1) : 13-34. doi: 10.3934/jgm.2016.8.13

[2]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of discrete mechanical systems by stages. Journal of Geometric Mechanics, 2016, 8 (1) : 35-70. doi: 10.3934/jgm.2016.8.35

[3]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems. Journal of Geometric Mechanics, 2010, 2 (1) : 69-111. doi: 10.3934/jgm.2010.2.69

[4]

Sergio Grillo, Marcela Zuccalli. Variational reduction of Lagrangian systems with general constraints. Journal of Geometric Mechanics, 2012, 4 (1) : 49-88. doi: 10.3934/jgm.2012.4.49

[5]

L. Búa, T. Mestdag, M. Salgado. Symmetry reduction, integrability and reconstruction in $k$-symplectic field theory. Journal of Geometric Mechanics, 2015, 7 (4) : 395-429. doi: 10.3934/jgm.2015.7.395

[6]

C. D. Ahlbrandt, A. C. Peterson. A general reduction of order theorem for discrete linear symplectic systems. Conference Publications, 1998, 1998 (Special) : 7-18. doi: 10.3934/proc.1998.1998.7

[7]

Inês Cruz, M. Esmeralda Sousa-Dias. Reduction of cluster iteration maps. Journal of Geometric Mechanics, 2014, 6 (3) : 297-318. doi: 10.3934/jgm.2014.6.297

[8]

Laura Luzzi, Ghaya Rekaya-Ben Othman, Jean-Claude Belfiore. Algebraic reduction for the Golden Code. Advances in Mathematics of Communications, 2012, 6 (1) : 1-26. doi: 10.3934/amc.2012.6.1

[9]

Jean-François Babadjian, Francesca Prinari, Elvira Zappale. Dimensional reduction for supremal functionals. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1503-1535. doi: 10.3934/dcds.2012.32.1503

[10]

Martins Bruveris, David C. P. Ellis, Darryl D. Holm, François Gay-Balmaz. Un-reduction. Journal of Geometric Mechanics, 2011, 3 (4) : 363-387. doi: 10.3934/jgm.2011.3.363

[11]

Hiroaki Yoshimura, Jerrold E. Marsden. Dirac cotangent bundle reduction. Journal of Geometric Mechanics, 2009, 1 (1) : 87-158. doi: 10.3934/jgm.2009.1.87

[12]

Heinz Schättler, Urszula Ledzewicz. Lyapunov-Schmidt reduction for optimal control problems. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 2201-2223. doi: 10.3934/dcdsb.2012.17.2201

[13]

A.V. Borisov, A.A. Kilin, I.S. Mamaev. Reduction and chaotic behavior of point vortices on a plane and a sphere. Conference Publications, 2005, 2005 (Special) : 100-109. doi: 10.3934/proc.2005.2005.100

[14]

Henrique Bursztyn, Alejandro Cabrera. Symmetries and reduction of multiplicative 2-forms. Journal of Geometric Mechanics, 2012, 4 (2) : 111-127. doi: 10.3934/jgm.2012.4.111

[15]

Noura Azzabou, Nikos Paragios. Spatio-temporal speckle reduction in ultrasound sequences. Inverse Problems & Imaging, 2010, 4 (2) : 211-222. doi: 10.3934/ipi.2010.4.211

[16]

Luis García-Naranjo. Reduction of almost Poisson brackets and Hamiltonization of the Chaplygin sphere. Discrete & Continuous Dynamical Systems - S, 2010, 3 (1) : 37-60. doi: 10.3934/dcdss.2010.3.37

[17]

Huaying Guo, Jin Liang. An optimal control model of carbon reduction and trading. Mathematical Control & Related Fields, 2016, 6 (4) : 535-550. doi: 10.3934/mcrf.2016015

[18]

Mike Crampin, Tom Mestdag. Reduction of invariant constrained systems using anholonomic frames. Journal of Geometric Mechanics, 2011, 3 (1) : 23-40. doi: 10.3934/jgm.2011.3.23

[19]

Sarbaz H. A. Khoshnaw. Reduction of a kinetic model of active export of importins. Conference Publications, 2015, 2015 (special) : 705-722. doi: 10.3934/proc.2015.0705

[20]

María Barbero-Liñán, Manuel de León, David Martín de Diego, Juan C. Marrero, Miguel C. Muñoz-Lecanda. Kinematic reduction and the Hamilton-Jacobi equation. Journal of Geometric Mechanics, 2012, 4 (3) : 207-237. doi: 10.3934/jgm.2012.4.207

2016 Impact Factor: 0.857

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (0)

[Back to Top]