2013, 7(4): 527-552. doi: 10.3934/jmd.2013.7.527

Entropic stability beyond partial hyperbolicity

1. 

C.N.R.S. & Département de Mathématiques, Université Paris-Sud, 91405 Orsay, France

2. 

Department of Mathematics, Brigham Young University, Provo, UT 84602

Received  May 2012 Revised  August 2013 Published  March 2014

We analyze a class of $C^0$-small but $C^1$-large deformations of Anosov diffeomorphisms that break the topological conjugacy and structural stability, but unexpectedly retain the following stability property. The usual semiconjugacy mapping the deformation to the Anosov diffeomorphism is in fact an isomorphism with respect to all ergodic, invariant probability measures with entropy close to the maximum. In particular, the value of the topological entropy and the existence of a unique measure of maximal entropy are preserved. We also establish expansiveness around those measures. However, this expansivity is too weak to ensure the existence of symbolic extensions.
    Many constructions of robustly transitive diffeomorphisms can be done within this class. In particular, we show that it includes a class described by Bonatti and Viana of robustly transitive diffeomorphisms that are not partially hyperbolic.
Citation: Jérôme Buzzi, Todd Fisher. Entropic stability beyond partial hyperbolicity. Journal of Modern Dynamics, 2013, 7 (4) : 527-552. doi: 10.3934/jmd.2013.7.527
References:
[1]

C. Bonatti, L. J. Díaz and M. Viana, Dynamics Beyond Uniform Hyperbolicity. A Global Geometric and Probabilistic Perspective,, Encyclopaedia of Mathematical Sciences, (2005).

[2]

C. Bonatti and M. Viana, SRB measures for partially hyperbolic systems whose central direction is mostly contracting,, Israel J. Math., 115 (2000), 157. doi: 10.1007/BF02810585.

[3]

N. Bourbaki, General Topology. Chapters 1-4,, Reprint of the 1966 edition, (1966).

[4]

R. Bowen, Topological entropy for non-compact sets,, Trans. Amer. Math. Soc., 184 (1973), 125. doi: 10.1090/S0002-9947-1973-0338317-X.

[5]

M. Boyle and T. Downarowicz, The entropy theory of symbolic extensions,, Invent. Math., 156 (2004), 119. doi: 10.1007/s00222-003-0335-2.

[6]

K. Burns and A. Wilkinson, Dynamical coherence and center bunching,, Discrete Contin. Dyn. Syst., 22 (2008), 89. doi: 10.3934/dcds.2008.22.89.

[7]

J. Buzzi, Intrinsic ergodicity of smooth interval maps,, Israel J. Math., 100 (1997), 125. doi: 10.1007/BF02773637.

[8]

J. Buzzi, Dimenional entropies and semi-uniform hyperbolicity,, in New Trends in Mathematical Physics. Selected Contributions of the XVth International Congress on Mathematical Physics (ed. V. Sidoravicius), (2009), 95. doi: 10.1007/978-90-481-2810-5_8.

[9]

J. Buzzi, A continuous, piecewise affine surface map with no measure of maximal entropy,, , ().

[10]

J. Buzzi, $C^r$ surface diffeomorphisms with no maximal entropy measure,, Erg. Th. Dynam. Syst., (). doi: 10.1017/etds.2013.25.

[11]

J. Buzzi, The almost Borel structure of diffeomorphisms with some hyperbolicity., Lecture notes. Hyperbolicity, (2013).

[12]

J. Buzzi, T. Fisher, M. Sambarino and C. Vásquez, Intrinsic ergodicity for certain nonhyperbolic robustly transitive systems,, Erg. Th. Dynam. Syst., 32 (2012), 63. doi: 10.1017/S0143385710000854.

[13]

L. J. Díaz and T. Fisher, Symbolic extensions for partially hyperbolic diffeomorphisms,, Discrete Contin. Dyn. Syst., 29 (2011), 1419. doi: 10.3934/dcds.2011.29.1419.

[14]

T. Downarowicz, Entropy structure,, J. Anal. Math., 96 (2005), 57. doi: 10.1007/BF02787825.

[15]

T. Downarowicz and S. Newhouse, Symbolic extensions in smooth dynamical systems,, Invent. Math., 160 (2005), 453. doi: 10.1007/s00222-004-0413-0.

[16]

T. Fisher, M. Sambarino and R. Potrie, Dynamical coherence of partially hyperbolic diffeomorphisms of tori isotopic to Anosov,, preprint, ().

[17]

M. Hochman, Isomorphism and embedding into Markov shifts off universally null sets,, Acta Applic. Math., 126 (2013), 187.

[18]

A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms,, Inst. Hautes Études Sci. Publ. Math., 51 (1980), 137.

[19]

A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems,, Encyclopedia of Mathematics and its Applications, (1995).

[20]

F. Ledrappier and P. Walters, A relativised variational principle for continuous transformations,, J. London Math. Soc. (2), 16 (1977), 568.

[21]

R. Mañé, Ergodic Theory and Differentiable Dynamics,, Translated from the Portuguese by Silvio Levy, (1987).

[22]

M. Misiurewicz, Diffeomorphism without any measure with maximal entropy,, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 21 (1973), 903.

[23]

M. Misiurewicz, Topological conditional entropy,, Studia Math., 55 (1976), 175.

[24]

S. Newhouse and L.-S. Young, Dynamics of certain skew products,, in Geometric Dynamics (Rio de Janeiro, (1981), 611. doi: 10.1007/BFb0061436.

[25]

M. J. Pacifico and J. L. Vieitez, On measure expansive diffeomorphisms,, preprint, ().

[26]

J. Palis, Open questions leading to a global perspective in dynamics,, Nonlinearity, 21 (2008). doi: 10.1088/0951-7715/21/4/T01.

[27]

Y. Pesin, Lectures on Partial Hyperbolicity and Stable Ergodicity,, Zurich Lectures in Advanced Mathematics, (2004). doi: 10.4171/003.

[28]

C. Robinson, Dynmical Systems Stability, Symbolic Dynamics, and Chaos,, Second edition, (1999). doi: 10.1117/12.343031.

[29]

F. Rodriguez Hertz, J. Rodriguez Hertz, A. Tahzibi and R. Ures, Maximizing measures for partially hyperbolic systems with compact center leaves,, preprint., ().

[30]

S. Ruette, Mixing Cr maps of the interval without maximal measure,, Israel J. Math., 127 (2002), 253. doi: 10.1007/BF02784534.

[31]

M. Shub, Topologically transitive diffeomorphisms on $T^4$,, in Dynamical Systems, (1971).

[32]

R. Ures, Intrinsic ergodicity of partially hyperbolic diffeomorphisms with hyperbolic linear part,, Proc. Amer. Math. Soc., 140 (2012), 1973. doi: 10.1090/S0002-9939-2011-11040-2.

[33]

B. Weiss, Intrinsically ergodic systems,, Bull. Amer. Math. Soc., 76 (1970), 1266. doi: 10.1090/S0002-9904-1970-12632-5.

show all references

References:
[1]

C. Bonatti, L. J. Díaz and M. Viana, Dynamics Beyond Uniform Hyperbolicity. A Global Geometric and Probabilistic Perspective,, Encyclopaedia of Mathematical Sciences, (2005).

[2]

C. Bonatti and M. Viana, SRB measures for partially hyperbolic systems whose central direction is mostly contracting,, Israel J. Math., 115 (2000), 157. doi: 10.1007/BF02810585.

[3]

N. Bourbaki, General Topology. Chapters 1-4,, Reprint of the 1966 edition, (1966).

[4]

R. Bowen, Topological entropy for non-compact sets,, Trans. Amer. Math. Soc., 184 (1973), 125. doi: 10.1090/S0002-9947-1973-0338317-X.

[5]

M. Boyle and T. Downarowicz, The entropy theory of symbolic extensions,, Invent. Math., 156 (2004), 119. doi: 10.1007/s00222-003-0335-2.

[6]

K. Burns and A. Wilkinson, Dynamical coherence and center bunching,, Discrete Contin. Dyn. Syst., 22 (2008), 89. doi: 10.3934/dcds.2008.22.89.

[7]

J. Buzzi, Intrinsic ergodicity of smooth interval maps,, Israel J. Math., 100 (1997), 125. doi: 10.1007/BF02773637.

[8]

J. Buzzi, Dimenional entropies and semi-uniform hyperbolicity,, in New Trends in Mathematical Physics. Selected Contributions of the XVth International Congress on Mathematical Physics (ed. V. Sidoravicius), (2009), 95. doi: 10.1007/978-90-481-2810-5_8.

[9]

J. Buzzi, A continuous, piecewise affine surface map with no measure of maximal entropy,, , ().

[10]

J. Buzzi, $C^r$ surface diffeomorphisms with no maximal entropy measure,, Erg. Th. Dynam. Syst., (). doi: 10.1017/etds.2013.25.

[11]

J. Buzzi, The almost Borel structure of diffeomorphisms with some hyperbolicity., Lecture notes. Hyperbolicity, (2013).

[12]

J. Buzzi, T. Fisher, M. Sambarino and C. Vásquez, Intrinsic ergodicity for certain nonhyperbolic robustly transitive systems,, Erg. Th. Dynam. Syst., 32 (2012), 63. doi: 10.1017/S0143385710000854.

[13]

L. J. Díaz and T. Fisher, Symbolic extensions for partially hyperbolic diffeomorphisms,, Discrete Contin. Dyn. Syst., 29 (2011), 1419. doi: 10.3934/dcds.2011.29.1419.

[14]

T. Downarowicz, Entropy structure,, J. Anal. Math., 96 (2005), 57. doi: 10.1007/BF02787825.

[15]

T. Downarowicz and S. Newhouse, Symbolic extensions in smooth dynamical systems,, Invent. Math., 160 (2005), 453. doi: 10.1007/s00222-004-0413-0.

[16]

T. Fisher, M. Sambarino and R. Potrie, Dynamical coherence of partially hyperbolic diffeomorphisms of tori isotopic to Anosov,, preprint, ().

[17]

M. Hochman, Isomorphism and embedding into Markov shifts off universally null sets,, Acta Applic. Math., 126 (2013), 187.

[18]

A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms,, Inst. Hautes Études Sci. Publ. Math., 51 (1980), 137.

[19]

A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems,, Encyclopedia of Mathematics and its Applications, (1995).

[20]

F. Ledrappier and P. Walters, A relativised variational principle for continuous transformations,, J. London Math. Soc. (2), 16 (1977), 568.

[21]

R. Mañé, Ergodic Theory and Differentiable Dynamics,, Translated from the Portuguese by Silvio Levy, (1987).

[22]

M. Misiurewicz, Diffeomorphism without any measure with maximal entropy,, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 21 (1973), 903.

[23]

M. Misiurewicz, Topological conditional entropy,, Studia Math., 55 (1976), 175.

[24]

S. Newhouse and L.-S. Young, Dynamics of certain skew products,, in Geometric Dynamics (Rio de Janeiro, (1981), 611. doi: 10.1007/BFb0061436.

[25]

M. J. Pacifico and J. L. Vieitez, On measure expansive diffeomorphisms,, preprint, ().

[26]

J. Palis, Open questions leading to a global perspective in dynamics,, Nonlinearity, 21 (2008). doi: 10.1088/0951-7715/21/4/T01.

[27]

Y. Pesin, Lectures on Partial Hyperbolicity and Stable Ergodicity,, Zurich Lectures in Advanced Mathematics, (2004). doi: 10.4171/003.

[28]

C. Robinson, Dynmical Systems Stability, Symbolic Dynamics, and Chaos,, Second edition, (1999). doi: 10.1117/12.343031.

[29]

F. Rodriguez Hertz, J. Rodriguez Hertz, A. Tahzibi and R. Ures, Maximizing measures for partially hyperbolic systems with compact center leaves,, preprint., ().

[30]

S. Ruette, Mixing Cr maps of the interval without maximal measure,, Israel J. Math., 127 (2002), 253. doi: 10.1007/BF02784534.

[31]

M. Shub, Topologically transitive diffeomorphisms on $T^4$,, in Dynamical Systems, (1971).

[32]

R. Ures, Intrinsic ergodicity of partially hyperbolic diffeomorphisms with hyperbolic linear part,, Proc. Amer. Math. Soc., 140 (2012), 1973. doi: 10.1090/S0002-9939-2011-11040-2.

[33]

B. Weiss, Intrinsically ergodic systems,, Bull. Amer. Math. Soc., 76 (1970), 1266. doi: 10.1090/S0002-9904-1970-12632-5.

[1]

Eleonora Catsigeras, Xueting Tian. Dominated splitting, partial hyperbolicity and positive entropy. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 4739-4759. doi: 10.3934/dcds.2016006

[2]

Wenxiang Sun, Xueting Tian. Dominated splitting and Pesin's entropy formula. Discrete & Continuous Dynamical Systems - A, 2012, 32 (4) : 1421-1434. doi: 10.3934/dcds.2012.32.1421

[3]

Jan Philipp Schröder. Ergodicity and topological entropy of geodesic flows on surfaces. Journal of Modern Dynamics, 2015, 9: 147-167. doi: 10.3934/jmd.2015.9.147

[4]

Xinsheng Wang, Lin Wang, Yujun Zhu. Formula of entropy along unstable foliations for $C^1$ diffeomorphisms with dominated splitting. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2125-2140. doi: 10.3934/dcds.2018087

[5]

Dante Carrasco-Olivera, Bernardo San Martín. Robust attractors without dominated splitting on manifolds with boundary. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4555-4563. doi: 10.3934/dcds.2014.34.4555

[6]

John Kieffer and En-hui Yang. Ergodic behavior of graph entropy. Electronic Research Announcements, 1997, 3: 11-16.

[7]

Katrin Gelfert. Lower bounds for the topological entropy. Discrete & Continuous Dynamical Systems - A, 2005, 12 (3) : 555-565. doi: 10.3934/dcds.2005.12.555

[8]

Jaume Llibre. Brief survey on the topological entropy. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3363-3374. doi: 10.3934/dcdsb.2015.20.3363

[9]

Xueting Tian, Paulo Varandas. Topological entropy of level sets of empirical measures for non-uniformly expanding maps. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5407-5431. doi: 10.3934/dcds.2017235

[10]

Boris Hasselblatt, Zbigniew Nitecki, James Propp. Topological entropy for nonuniformly continuous maps. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1/2) : 201-213. doi: 10.3934/dcds.2008.22.201

[11]

Michał Misiurewicz. On Bowen's definition of topological entropy. Discrete & Continuous Dynamical Systems - A, 2004, 10 (3) : 827-833. doi: 10.3934/dcds.2004.10.827

[12]

Jérôme Buzzi, Sylvie Ruette. Large entropy implies existence of a maximal entropy measure for interval maps. Discrete & Continuous Dynamical Systems - A, 2006, 14 (4) : 673-688. doi: 10.3934/dcds.2006.14.673

[13]

Piotr Oprocha, Paweł Potorski. Topological mixing, knot points and bounds of topological entropy. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3547-3564. doi: 10.3934/dcdsb.2015.20.3547

[14]

Dongkui Ma, Min Wu. Topological pressure and topological entropy of a semigroup of maps. Discrete & Continuous Dynamical Systems - A, 2011, 31 (2) : 545-556. doi: 10.3934/dcds.2011.31.545

[15]

Eva Glasmachers, Gerhard Knieper, Carlos Ogouyandjou, Jan Philipp Schröder. Topological entropy of minimal geodesics and volume growth on surfaces. Journal of Modern Dynamics, 2014, 8 (1) : 75-91. doi: 10.3934/jmd.2014.8.75

[16]

Dante Carrasco-Olivera, Roger Metzger Alvan, Carlos Arnoldo Morales Rojas. Topological entropy for set-valued maps. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3461-3474. doi: 10.3934/dcdsb.2015.20.3461

[17]

César J. Niche. Topological entropy of a magnetic flow and the growth of the number of trajectories. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2/3) : 577-580. doi: 10.3934/dcds.2004.11.577

[18]

Katayun Barmak, Eva Eggeling, Maria Emelianenko, Yekaterina Epshteyn, David Kinderlehrer, Richard Sharp, Shlomo Ta'asan. An entropy based theory of the grain boundary character distribution. Discrete & Continuous Dynamical Systems - A, 2011, 30 (2) : 427-454. doi: 10.3934/dcds.2011.30.427

[19]

José S. Cánovas. Topological sequence entropy of $\omega$–limit sets of interval maps . Discrete & Continuous Dynamical Systems - A, 2001, 7 (4) : 781-786. doi: 10.3934/dcds.2001.7.781

[20]

N. Maaroufi. Topological entropy by unit length for the Ginzburg-Landau equation on the line. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 647-662. doi: 10.3934/dcds.2014.34.647

2016 Impact Factor: 0.706

Metrics

  • PDF downloads (0)
  • HTML views (3)
  • Cited by (6)

Other articles
by authors

[Back to Top]