2014, 1(2): 255-281. doi: 10.3934/jdg.2014.1.255

Dynamics of large cooperative pulsed-coupled networks

1. 

Instituto de Matemática y Estadística Rafael Laguardia, Universidad de la República, Av. Herrera y Reissig 565, C.P.11300, Montevideo

Received  February 2013 Revised  December 2013 Published  March 2014

We study the deterministic dynamics of networks ${\mathcal N}$ composed by $m$ non identical, mutually pulse-coupled cells. We assume weighted, asymmetric and positive (cooperative) interactions among the cells, and arbitrarily large values of $m$. We consider two cases of the network's graph: the complete graph, and the existence of a large core (i.e. a large complete subgraph). First, we prove that the system periodically eventually synchronizes with a natural "spiking period" $p \geq 1$, and that if the cells are mutually structurally identical or similar, then the synchronization is complete ($p= 1$) . Second, we prove that the amount of information $H$ that ${\mathcal N}$ generates or processes, equals $\log p$. Therefore, if ${\mathcal N}$ completely synchronizes, the information is null. Finally, we prove that ${\mathcal N}$ protects the cells from their risk of death.
Citation: Eleonora Catsigeras. Dynamics of large cooperative pulsed-coupled networks. Journal of Dynamics & Games, 2014, 1 (2) : 255-281. doi: 10.3934/jdg.2014.1.255
References:
[1]

E. Accinelli, S. London and E. Sánchez Carrera, A Model of Imitative Behavior in the Population of Firms and Workers,, Quaderni del Dipartimento di Economia Politica, (2009).

[2]

S. Bottani, Synchronization of integrate and fire oscillators with global coupling,, Physical Review E, 54 (1996), 2334. doi: 10.1103/PhysRevE.54.2334.

[3]

R. Boulet, B. Jouve, F. Rossi and N. Villa, Batch kernel SOM and related Laplacian methods for social network analysis,, Neurocomputing, 71 (2008), 1257. doi: 10.1016/j.neucom.2007.12.026.

[4]

E. Catsigeras and P. Guiraud, Integrate and fire neural networks, piecewise contractive maps and limit cycles,, Journ. Math. Biol., 67 (2013), 609. doi: 10.1007/s00285-012-0560-7.

[5]

B. Cessac, A discrete time neural network model with spiking neurons. Rigorous results on the spontaneous dynamics,, Journ. Math. Biol., 56 (2008), 311. doi: 10.1007/s00285-007-0117-3.

[6]

B. Cessac and T. Viéville, On Dynamics of Integrate-and-fire Neural Networks with Conductance Based Synapses,, Frontiers In Computational Neuroscience, (2008). doi: 10.3389/neuro.10.002.2008.

[7]

J. R. Chazottes and B. Fernandez (Eds), Dynamics of Coupled Map Lattices and of Related Spatially Extended Systems,, Lecture Notes in Physics, 671 (2005).

[8]

M. Cottrell, M. Olteanu, F. Rossi, J. Rynkiewicz and N. Villa-Vialaneix, Neural networks for complex data,, Künstliche Intelligenz, 26 (2012), 373. doi: 10.1007/s13218-012-0207-2.

[9]

R. Coutinho, B. Fernandez, R. Lima and A. Meyroneinc, Discrete time piecewise affine models of genetic regulatory networks,, Journ. Math. Biol., 52 (2006), 524. doi: 10.1007/s00285-005-0359-x.

[10]

AL. Dutot, J. Rynkiewicz, F. Steiner and J. Rude, A 24-h forecast of ozone peaks and exceedance levels using neural classifiers and weather predictions,, Environ Model Softw, 22 (2007), 1261. doi: 10.1016/j.envsoft.2006.08.002.

[11]

G. B. Ermentrout and N. Kopell, Oscillator death in systems of coupled neural oscillators,, SIAM Journal on Applied Mathematics, 50 (1990), 125. doi: 10.1137/0150009.

[12]

G. B. Ermentrout and D. H. Terman, Mathematical Foundations of Neuroscience,, Interdisc. Appl. Math., (2010). doi: 10.1007/978-0-387-87708-2.

[13]

J. Feng, L. Zhu and H. Wang, Stability of Ecosystem induced by mutual interference between predators,, Procedia Environmental Sciences, 2 (2010), 42. doi: 10.1016/j.proenv.2010.10.007.

[14]

R. Golamen, Why learning doesn't add up: Equilibrium selection with a composition of learning rules,, Int. Jroun. Game Theory, 40 (2011), 719. doi: 10.1007/s00182-010-0265-3.

[15]

H. Höglund, Detecting Earnings Management Using Neural Networks,, Doctoral Thesis Hanken School of Economics, (2010).

[16]

E. M. Izhikevich, Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting,, MIT Press, (2007).

[17]

B. Maillet, M. Olteanu and J. Rynkiewicz, Nonlinear analysis of shocks when financial markets are subject to changes in regime,, in Proc of XIIth European Symposium on Artificial Neural Networks, (2004), 87.

[18]

W. Mass and C. M. Bishop (Eds), Pulsed Neural Networks,, MIT Press, (2001).

[19]

I. Milchtaich, Representation of finite games as network of congestion,, Int. Journ. Game Theory, 42 (2013), 1085. doi: 10.1007/s00182-012-0363-5.

[20]

R. E. Mirollo and S. H. Strogatz, Synchronization of pulse-coupled biological oscillators,, SIAM J. Appl. Math., 50 (1990), 1645. doi: 10.1137/0150098.

[21]

M. A. Jalil and M. Misas, Evaluación de pronósticos de tipo de cambio utilizando redes neuronales y funciones de pérdida asimétricas (Spanish),, Revista Colombiana de Estadística, 30 (2007), 143.

[22]

M. E. J. Newman, D. J. Watts, and S. H. Strogatz, Random graph models of social networks,, Proc. Nal. Acad. Sci. USA, 99 (2002), 2566. doi: 10.1073/pnas.012582999.

[23]

A. Pikovsky and Y. Maistrenko (Editors), Synchronization: Theory and Application,, Kluwer Academic Publ, (2003). doi: 10.1007/978-94-010-0217-2.

[24]

A. Politi and A. Torcini, Stable chaos,, in Nonlinear Dynamics and Chaos: Advances and Perspectives, (2010). doi: 10.1007/978-3-642-04629-2.

[25]

G. M. Ramírez Ávila, J. L. Guisset and J. L. Deneubourg, Synchronization in light-controlled oscillators,, Physica D, 182 (2003), 254. doi: 10.1016/S0167-2789(03)00135-0.

[26]

V. S. H. Raoa and M. N. Kumarb, Estimation of the parameters of an infectious disease model using neural networks,, Nonlinear Analysis: Real World Applications, 11 (2010), 1810. doi: 10.1016/j.nonrwa.2009.04.006.

[27]

N. Rubido, C. Cabeza, S. Kahan, G. M. Ramírez Ávila and A. C. Marti, Synchronization regions of two pulse-coupled electronic piecewise linear oscillators,, Europ. Phys. Journ. D, 62 (2011), 51. doi: 10.1140/epjd/e2010-00215-4.

[28]

G. T. Stamov and I. Stamova, Almost periodic solutions for impulsive neural networks with delay,, Applied Mathematical Modelling, 31 (2007), 1263. doi: 10.1016/j.apm.2006.04.008.

[29]

C. van Vreeswijk, L. F. Abbott and B. Ermentrout, When inhibition not excitation synchronizes neural firing,, Journ. Comput. Neuroscience, 1 (1994), 313. doi: 10.1007/BF00961879.

[30]

D. A. Vasseur and J. Fox, Phase-locking and environmental fluctuations generate synchrony in a predator-prey community,, Nature, 460 (2009), 1007. doi: 10.1038/nature08208.

[31]

D. J. Watts and S. H. Strogatz, Collective Dynamics of Small-World,, Nature (London), 393 (1998), 440.

[32]

T. Yang and L. O. Chua, Impulsive stabilization for control and synchronization of chaotic systems: theory and application to secure communication,, IEEE Trans. Circuits Syst., 44 (1997), 976. doi: 10.1109/81.633887.

[33]

Young L.-S, Chaotic phenomena in three setting: Large, noisy and out of equilibrium,, Nonlinearity, 21 (2008). doi: 10.1088/0951-7715/21/11/T04.

show all references

References:
[1]

E. Accinelli, S. London and E. Sánchez Carrera, A Model of Imitative Behavior in the Population of Firms and Workers,, Quaderni del Dipartimento di Economia Politica, (2009).

[2]

S. Bottani, Synchronization of integrate and fire oscillators with global coupling,, Physical Review E, 54 (1996), 2334. doi: 10.1103/PhysRevE.54.2334.

[3]

R. Boulet, B. Jouve, F. Rossi and N. Villa, Batch kernel SOM and related Laplacian methods for social network analysis,, Neurocomputing, 71 (2008), 1257. doi: 10.1016/j.neucom.2007.12.026.

[4]

E. Catsigeras and P. Guiraud, Integrate and fire neural networks, piecewise contractive maps and limit cycles,, Journ. Math. Biol., 67 (2013), 609. doi: 10.1007/s00285-012-0560-7.

[5]

B. Cessac, A discrete time neural network model with spiking neurons. Rigorous results on the spontaneous dynamics,, Journ. Math. Biol., 56 (2008), 311. doi: 10.1007/s00285-007-0117-3.

[6]

B. Cessac and T. Viéville, On Dynamics of Integrate-and-fire Neural Networks with Conductance Based Synapses,, Frontiers In Computational Neuroscience, (2008). doi: 10.3389/neuro.10.002.2008.

[7]

J. R. Chazottes and B. Fernandez (Eds), Dynamics of Coupled Map Lattices and of Related Spatially Extended Systems,, Lecture Notes in Physics, 671 (2005).

[8]

M. Cottrell, M. Olteanu, F. Rossi, J. Rynkiewicz and N. Villa-Vialaneix, Neural networks for complex data,, Künstliche Intelligenz, 26 (2012), 373. doi: 10.1007/s13218-012-0207-2.

[9]

R. Coutinho, B. Fernandez, R. Lima and A. Meyroneinc, Discrete time piecewise affine models of genetic regulatory networks,, Journ. Math. Biol., 52 (2006), 524. doi: 10.1007/s00285-005-0359-x.

[10]

AL. Dutot, J. Rynkiewicz, F. Steiner and J. Rude, A 24-h forecast of ozone peaks and exceedance levels using neural classifiers and weather predictions,, Environ Model Softw, 22 (2007), 1261. doi: 10.1016/j.envsoft.2006.08.002.

[11]

G. B. Ermentrout and N. Kopell, Oscillator death in systems of coupled neural oscillators,, SIAM Journal on Applied Mathematics, 50 (1990), 125. doi: 10.1137/0150009.

[12]

G. B. Ermentrout and D. H. Terman, Mathematical Foundations of Neuroscience,, Interdisc. Appl. Math., (2010). doi: 10.1007/978-0-387-87708-2.

[13]

J. Feng, L. Zhu and H. Wang, Stability of Ecosystem induced by mutual interference between predators,, Procedia Environmental Sciences, 2 (2010), 42. doi: 10.1016/j.proenv.2010.10.007.

[14]

R. Golamen, Why learning doesn't add up: Equilibrium selection with a composition of learning rules,, Int. Jroun. Game Theory, 40 (2011), 719. doi: 10.1007/s00182-010-0265-3.

[15]

H. Höglund, Detecting Earnings Management Using Neural Networks,, Doctoral Thesis Hanken School of Economics, (2010).

[16]

E. M. Izhikevich, Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting,, MIT Press, (2007).

[17]

B. Maillet, M. Olteanu and J. Rynkiewicz, Nonlinear analysis of shocks when financial markets are subject to changes in regime,, in Proc of XIIth European Symposium on Artificial Neural Networks, (2004), 87.

[18]

W. Mass and C. M. Bishop (Eds), Pulsed Neural Networks,, MIT Press, (2001).

[19]

I. Milchtaich, Representation of finite games as network of congestion,, Int. Journ. Game Theory, 42 (2013), 1085. doi: 10.1007/s00182-012-0363-5.

[20]

R. E. Mirollo and S. H. Strogatz, Synchronization of pulse-coupled biological oscillators,, SIAM J. Appl. Math., 50 (1990), 1645. doi: 10.1137/0150098.

[21]

M. A. Jalil and M. Misas, Evaluación de pronósticos de tipo de cambio utilizando redes neuronales y funciones de pérdida asimétricas (Spanish),, Revista Colombiana de Estadística, 30 (2007), 143.

[22]

M. E. J. Newman, D. J. Watts, and S. H. Strogatz, Random graph models of social networks,, Proc. Nal. Acad. Sci. USA, 99 (2002), 2566. doi: 10.1073/pnas.012582999.

[23]

A. Pikovsky and Y. Maistrenko (Editors), Synchronization: Theory and Application,, Kluwer Academic Publ, (2003). doi: 10.1007/978-94-010-0217-2.

[24]

A. Politi and A. Torcini, Stable chaos,, in Nonlinear Dynamics and Chaos: Advances and Perspectives, (2010). doi: 10.1007/978-3-642-04629-2.

[25]

G. M. Ramírez Ávila, J. L. Guisset and J. L. Deneubourg, Synchronization in light-controlled oscillators,, Physica D, 182 (2003), 254. doi: 10.1016/S0167-2789(03)00135-0.

[26]

V. S. H. Raoa and M. N. Kumarb, Estimation of the parameters of an infectious disease model using neural networks,, Nonlinear Analysis: Real World Applications, 11 (2010), 1810. doi: 10.1016/j.nonrwa.2009.04.006.

[27]

N. Rubido, C. Cabeza, S. Kahan, G. M. Ramírez Ávila and A. C. Marti, Synchronization regions of two pulse-coupled electronic piecewise linear oscillators,, Europ. Phys. Journ. D, 62 (2011), 51. doi: 10.1140/epjd/e2010-00215-4.

[28]

G. T. Stamov and I. Stamova, Almost periodic solutions for impulsive neural networks with delay,, Applied Mathematical Modelling, 31 (2007), 1263. doi: 10.1016/j.apm.2006.04.008.

[29]

C. van Vreeswijk, L. F. Abbott and B. Ermentrout, When inhibition not excitation synchronizes neural firing,, Journ. Comput. Neuroscience, 1 (1994), 313. doi: 10.1007/BF00961879.

[30]

D. A. Vasseur and J. Fox, Phase-locking and environmental fluctuations generate synchrony in a predator-prey community,, Nature, 460 (2009), 1007. doi: 10.1038/nature08208.

[31]

D. J. Watts and S. H. Strogatz, Collective Dynamics of Small-World,, Nature (London), 393 (1998), 440.

[32]

T. Yang and L. O. Chua, Impulsive stabilization for control and synchronization of chaotic systems: theory and application to secure communication,, IEEE Trans. Circuits Syst., 44 (1997), 976. doi: 10.1109/81.633887.

[33]

Young L.-S, Chaotic phenomena in three setting: Large, noisy and out of equilibrium,, Nonlinearity, 21 (2008). doi: 10.1088/0951-7715/21/11/T04.

[1]

Stilianos Louca, Fatihcan M. Atay. Spatially structured networks of pulse-coupled phase oscillators on metric spaces. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3703-3745. doi: 10.3934/dcds.2014.34.3703

[2]

Xiwei Liu, Tianping Chen, Wenlian Lu. Cluster synchronization for linearly coupled complex networks. Journal of Industrial & Management Optimization, 2011, 7 (1) : 87-101. doi: 10.3934/jimo.2011.7.87

[3]

Jiahua Zhang, Shu-Cherng Fang, Yifan Xu, Ziteng Wang. A cooperative game with envy. Journal of Industrial & Management Optimization, 2017, 13 (4) : 2049-2066. doi: 10.3934/jimo.2017031

[4]

Shuang Liu, Wenxue Li. Outer synchronization of delayed coupled systems on networks without strong connectedness: A hierarchical method. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 837-859. doi: 10.3934/dcdsb.2018045

[5]

Sujit Nair, Naomi Ehrich Leonard. Stable synchronization of rigid body networks. Networks & Heterogeneous Media, 2007, 2 (4) : 597-626. doi: 10.3934/nhm.2007.2.597

[6]

V. Afraimovich, J.-R. Chazottes, A. Cordonet. Synchronization in directionally coupled systems: Some rigorous results. Discrete & Continuous Dynamical Systems - B, 2001, 1 (4) : 421-442. doi: 10.3934/dcdsb.2001.1.421

[7]

Chuangye Liu, Zhi-Qiang Wang. Synchronization of positive solutions for coupled Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 2795-2808. doi: 10.3934/dcds.2018118

[8]

David Hales, Stefano Arteconi. Motifs in evolving cooperative networks look like protein structure networks. Networks & Heterogeneous Media, 2008, 3 (2) : 239-249. doi: 10.3934/nhm.2008.3.239

[9]

Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623

[10]

Joseph D. Skufca, Erik M. Bollt. Communication and Synchronization in Disconnected Networks with Dynamic Topology: Moving Neighborhood Networks. Mathematical Biosciences & Engineering, 2004, 1 (2) : 347-359. doi: 10.3934/mbe.2004.1.347

[11]

Jide Sun, Lili Wang. The interaction between BIM's promotion and interest game under information asymmetry. Journal of Industrial & Management Optimization, 2015, 11 (4) : 1301-1319. doi: 10.3934/jimo.2015.11.1301

[12]

Sourabh Bhattacharya, Abhishek Gupta, Tamer Başar. Jamming in mobile networks: A game-theoretic approach. Numerical Algebra, Control & Optimization, 2013, 3 (1) : 1-30. doi: 10.3934/naco.2013.3.1

[13]

Mahendra Piraveenan, Mikhail Prokopenko, Albert Y. Zomaya. On congruity of nodes and assortative information content in complex networks. Networks & Heterogeneous Media, 2012, 7 (3) : 441-461. doi: 10.3934/nhm.2012.7.441

[14]

R. Yamapi, R.S. MacKay. Stability of synchronization in a shift-invariant ring of mutually coupled oscillators. Discrete & Continuous Dynamical Systems - B, 2008, 10 (4) : 973-996. doi: 10.3934/dcdsb.2008.10.973

[15]

Tatsien Li, Bopeng Rao, Yimin Wei. Generalized exact boundary synchronization for a coupled system of wave equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 2893-2905. doi: 10.3934/dcds.2014.34.2893

[16]

Igor Chueshov, Peter E. Kloeden, Meihua Yang. Synchronization in coupled stochastic sine-Gordon wave model. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 2969-2990. doi: 10.3934/dcdsb.2016082

[17]

Olena Naboka. On synchronization of oscillations of two coupled Berger plates with nonlinear interior damping. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1933-1956. doi: 10.3934/cpaa.2009.8.1933

[18]

Jin-Liang Wang, Zhi-Chun Yang, Tingwen Huang, Mingqing Xiao. Local and global exponential synchronization of complex delayed dynamical networks with general topology. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 393-408. doi: 10.3934/dcdsb.2011.16.393

[19]

Tingting Su, Xinsong Yang. Finite-time synchronization of competitive neural networks with mixed delays. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3655-3667. doi: 10.3934/dcdsb.2016115

[20]

Yong Zhao, Qishao Lu. Periodic oscillations in a class of fuzzy neural networks under impulsive control. Conference Publications, 2011, 2011 (Special) : 1457-1466. doi: 10.3934/proc.2011.2011.1457

 Impact Factor: 

Metrics

  • PDF downloads (1)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]