2014, 8(1): 293-320. doi: 10.3934/ipi.2014.8.293

A local information based variational model for selective image segmentation

1. 

School of Mathematical Sciences, Dalian University of Technology, Dalian, Liaoning, 116024, China

2. 

Centre for Mathematical Imaging Techniques and Department of Mathematical Sciences, University of Liverpool, Liverpool L69 7ZL, United Kingdom

3. 

School of Mathematical Science, Dalian University of Technology, Dalian, Liaoning 116024

4. 

Radiology Department, Royal Liverpool University Hospitals, Prescot Street, Liverpool L7 8XP, United Kingdom

Received  July 2011 Revised  November 2012 Published  March 2014

Many effective models are available for segmentation of an image to extract all homogenous objects within it. For applications where segmentation of a single object identifiable by geometric constraints within an image is desired, much less work has been done for this purpose. This paper presents an improved selective segmentation model, without `balloon' force, combining geometrical constraints and local image intensity information around zero level set, aiming to overcome the weakness of getting spurious solutions by Badshah and Chen's model [8]. A key step in our new strategy is an adaptive local band selection algorithm. Numerical experiments show that the new model appears to be able to detect an object possessing highly complex and nonconvex features, and to produce desirable results in terms of segmentation quality and robustness.
Citation: Jianping Zhang, Ke Chen, Bo Yu, Derek A. Gould. A local information based variational model for selective image segmentation. Inverse Problems & Imaging, 2014, 8 (1) : 293-320. doi: 10.3934/ipi.2014.8.293
References:
[1]

D. Adalsteinsson and J. A. Sethian, A fast level set method for propagating interfaces,, J. Comput. Phys., 118 (1995), 269. doi: 10.1006/jcph.1995.1098.

[2]

D. Adalsteinsson and J. A. Sethian, A level set approach to a unified model for etching, deposition, and lithography. II. Three-dimensional simulations,, J. Comput. Phys., 122 (1995), 348. doi: 10.1006/jcph.1995.1221.

[3]

L. Ambrosio and V. Tortorelli, Approximation of functionals depending on jumps by elliptic functionals via $\Gamma$-convergence,, Commu. Pure and Applied Math., 43 (1990), 999. doi: 10.1002/cpa.3160430805.

[4]

A. Araujo, S. Barbeiro and P. Serranho, Stability of Finite Difference Schemes for Complex Diffusion Processes,, Pre-print, (2010), 10. doi: 10.1137/110825789.

[5]

G. Aubert and P. Kornprobst, Mathematical Problems in Image Processing,, Springer, (2002).

[6]

N. Badshah and K. Chen, Multigrid method for the Chan-Vese model in variational segmentation,, Communications in Computational Physics, 4 (2008), 294.

[7]

N. Badshah and K. Chen, On two multigrid algorithms for modeling variation multiphase image segmentation,, IEEE Trans. Image Processing, 18 (2009), 1097. doi: 10.1109/TIP.2009.2014260.

[8]

N. Badshah and K. Chen, Image selective segmentation under geometrical constraints using an active contour approach,, Commun. Comput. Phys., 7 (2010), 759. doi: 10.4208/cicp.2009.09.026.

[9]

X. Bresson, S. Esedoglu, P. Vandergheynst, J. Thiran and S. Osher, Fast global minimization of the active contour/snake models,, J. Math. Imaging and Vision, 28 (2007), 151. doi: 10.1007/s10851-007-0002-0.

[10]

E. S. Brown, T. F. Chan and X. Bresson, A convex approach for multi-phase piecewise constant Mumford-Shah image segmentation,, Int. J. Computer Vision, 98 (2012), 103. doi: 10.1007/s11263-011-0499-y.

[11]

E. S. Brown, T. F. Chan and X. Bresson, A convex relaxation method for a class of vector-valued minimization problems with applications to Mumford-Shah segmentation,, UCLA CAM report 10-43, (2010), 10.

[12]

M. Burger, G. Gilboa, S. Osher and J. Xu, Nonlinear inverse scale space methods,, Commun. Math. Sci., 4 (2006), 179. doi: 10.4310/CMS.2006.v4.n1.a7.

[13]

J. F. Canny, Finding Edges and Lines in Images,, Technical Report AITR-720, (1983).

[14]

V. Caselles, R. Kimmel and G. Sapiro, Geodesic active contours,, Int. J. Computer Vision, 22 (1997), 61. doi: 10.1023/A:1007979827043.

[15]

T. F. Chan, S. Esedoglu and M. Nikolova, Algorithms for finding global minimizers of image segmentation and denoising models,, SIAM J. Applied Mathematics, 66 (2006), 1632. doi: 10.1137/040615286.

[16]

T. F. Chan, B. Y. Sandberg and L. A. Vese, Active contours without edges for vector-valued images,, J. Visual Commun. Image Representation, 11 (2000), 130. doi: 10.1006/jvci.1999.0442.

[17]

T. F. Chan and L. A. Vese, An efficient variational multiphase motion for the Mumford-Shah segmentation model,, Proc. Asilomar Conf. Signals, 1 (2000), 490. doi: 10.1109/ACSSC.2000.911004.

[18]

T. F. Chan and L. Vese, Active coutours without edges,, IEEE Trans. Image Processing, 10 (2001), 266. doi: 10.1109/83.902291.

[19]

T. F. Chan and J. H. Shen, Image Processing and Analysis: Variational, PDE, Wavelet and Stochastic Methods,, SIAM, (2005). doi: 10.1137/1.9780898717877.

[20]

G. Gilboa, N. Sochen and Y. Zeeni, Image enhancement and denoising by complex diffusion processes,, IEEE Trans Pattern Anal. Mach. Intell., 26 (2004), 1020. doi: 10.1109/TPAMI.2004.47.

[21]

T. Goldstein, X. Bresson and S. Osher, Geometric applications of the split Bregman method: Segmentation and surface reconstruction,, J. Sci. Computing, 45 (2010), 272. doi: 10.1007/s10915-009-9331-z.

[22]

C. Gout, C. Le Guyader and L. A. Vese, Segmentation under geometrical consitions with geodesic active contour and interpolation using level set methods,, Numerical Algorithms, 39 (2005), 155. doi: 10.1007/s11075-004-3627-8.

[23]

C. Le Guyader, N. Forcadel and C. Gout, Image segmentation using a generalized fast marching method,, Numerical Algorithms, 48 (2008), 189. doi: 10.1007/s11075-008-9183-x.

[24]

M. Jeon, M. Alexander, W. Pedrycz and N. Pizzi, Unsupervised hierarchical image segmentation with level set and additive operator splitting,, Pattern Recogn. Lett., 26 (2005), 1461. doi: 10.1016/j.patrec.2004.11.023.

[25]

M. Kass, A. Witkin and D. Terzopoulos, Snake: Active contour models,, Int. J. Computer Vision, 1 (1988), 321. doi: 10.1007/BF00133570.

[26]

S. Lankton and A. Tannenbaum, Localizing region-based active contours,, IEEE Trans. Image Processing, 17 (2008), 2029. doi: 10.1109/TIP.2008.2004611.

[27]

C. Li, C. Kao, J. Gore and Z. Ding, Implicit active contours driven by local binary fitting energy,, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (Washington, (2007), 1. doi: 10.1109/CVPR.2007.383014.

[28]

F. Li, M. K. Ng and C. Li, Variational fuzzy Mumford-Shah model for image segmentation,, SIAM J. Appl. Math., 70 (2010), 2750. doi: 10.1137/090753887.

[29]

J. Lie, M. Lysaker and X.-C. Tai, A binary level set model and some applications to Mumford-Shah image segmentation,, IEEE Trans. Image Processing, 15 (2006), 1171. doi: 10.1109/TIP.2005.863956.

[30]

R. Malladi, J. A. Sethian and B. C. Vemuri, Shape modeling with front propagation: A level set approach,, IEEE Trans. Pattern Anal. Mach. Intell., 17 (1995), 158. doi: 10.1109/34.368173.

[31]

A. Marquina and S. Osher, Explicit algorithms for a new time dependent model based on level set motion for nonlinear deblurring and noise removal,, SIAM J. Sci. Computing, 22 (2000), 387. doi: 10.1137/S1064827599351751.

[32]

H. Mewada and S. Patnaik, Variable kernel based Chan-Vese model for image segmentation,, Annual IEEE India Conference (INDICON), (2009), 1. doi: 10.1109/INDCON.2009.5409429.

[33]

J. Mille, Narrow band region-based active contours and surfaces for 2D and 3D segmentation,, Computer Vision and Image Understanding, 113 (2009), 946. doi: 10.1016/j.cviu.2009.05.002.

[34]

D. Mumford and J. Shah, Optimal approximation by piecewise smooth functions and associated variational problem,, Commun. Pure Appl. Math., 42 (1989), 577. doi: 10.1002/cpa.3160420503.

[35]

S. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces,, Springer Verlag, (2005).

[36]

S. Osher and J. Sethian, Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations,, J. Comput. Phys., 79 (1988), 12. doi: 10.1016/0021-9991(88)90002-2.

[37]

D. P. Peng, B. Merriman, S. Osher, H. K. Zhao and M. Kang, A PDE-Based fast local level set method,, J. Comput. Phys., 155 (1999), 410. doi: 10.1006/jcph.1999.6345.

[38]

J. M. S. Prewitt, Object enhancement and extraction,, in Picture Processing and Psychopictorics, (1970), 75.

[39]

J. A. Sethian, Fast marching methods,, SIAM Review, 41 (1999), 199. doi: 10.1137/S0036144598347059.

[40]

J. H. Shen, $\Gamma$-Convergence approximation to piecewise constant Mumford-Shah segmentation,, Advanced Concepts for Intelligent Vision Systems, 3708 (2005), 499. doi: 10.1007/11558484_63.

[41]

I. Sobel, An isotropic $3\times3$ image gradient operator,, Machine Vision for Three-Dimention Scenes, (1990), 376.

[42]

M. Sussman, P. Smereka and S. Osher, A level set approach for computing solutions to incompressible two-phase flow,, J. Comput. Phys., 114 (1994), 146. doi: 10.1006/jcph.1994.1155.

[43]

X. C. Tai, O. Christiansen, P. Lin and I. Skjaelaaen, Image segmentation using some piecewise constant level set methods with MBO type of projection,, Int. J. Computer Vision, 73 (2007), 61. doi: 10.1007/s11263-006-9140-x.

[44]

L. A. Vese and T. F. Chan, A multiphase level set framework for image segmentation using the Mumford and Shah model,, Int. J. Computer Vision, 50 (2002), 271.

[45]

H. K. Zhao, T. F. Chan, B. Merriman and S. Osher, A variational level set approach to multiphase motion,, J. Comput. Phys., 127 (1996), 179. doi: 10.1006/jcph.1996.0167.

show all references

References:
[1]

D. Adalsteinsson and J. A. Sethian, A fast level set method for propagating interfaces,, J. Comput. Phys., 118 (1995), 269. doi: 10.1006/jcph.1995.1098.

[2]

D. Adalsteinsson and J. A. Sethian, A level set approach to a unified model for etching, deposition, and lithography. II. Three-dimensional simulations,, J. Comput. Phys., 122 (1995), 348. doi: 10.1006/jcph.1995.1221.

[3]

L. Ambrosio and V. Tortorelli, Approximation of functionals depending on jumps by elliptic functionals via $\Gamma$-convergence,, Commu. Pure and Applied Math., 43 (1990), 999. doi: 10.1002/cpa.3160430805.

[4]

A. Araujo, S. Barbeiro and P. Serranho, Stability of Finite Difference Schemes for Complex Diffusion Processes,, Pre-print, (2010), 10. doi: 10.1137/110825789.

[5]

G. Aubert and P. Kornprobst, Mathematical Problems in Image Processing,, Springer, (2002).

[6]

N. Badshah and K. Chen, Multigrid method for the Chan-Vese model in variational segmentation,, Communications in Computational Physics, 4 (2008), 294.

[7]

N. Badshah and K. Chen, On two multigrid algorithms for modeling variation multiphase image segmentation,, IEEE Trans. Image Processing, 18 (2009), 1097. doi: 10.1109/TIP.2009.2014260.

[8]

N. Badshah and K. Chen, Image selective segmentation under geometrical constraints using an active contour approach,, Commun. Comput. Phys., 7 (2010), 759. doi: 10.4208/cicp.2009.09.026.

[9]

X. Bresson, S. Esedoglu, P. Vandergheynst, J. Thiran and S. Osher, Fast global minimization of the active contour/snake models,, J. Math. Imaging and Vision, 28 (2007), 151. doi: 10.1007/s10851-007-0002-0.

[10]

E. S. Brown, T. F. Chan and X. Bresson, A convex approach for multi-phase piecewise constant Mumford-Shah image segmentation,, Int. J. Computer Vision, 98 (2012), 103. doi: 10.1007/s11263-011-0499-y.

[11]

E. S. Brown, T. F. Chan and X. Bresson, A convex relaxation method for a class of vector-valued minimization problems with applications to Mumford-Shah segmentation,, UCLA CAM report 10-43, (2010), 10.

[12]

M. Burger, G. Gilboa, S. Osher and J. Xu, Nonlinear inverse scale space methods,, Commun. Math. Sci., 4 (2006), 179. doi: 10.4310/CMS.2006.v4.n1.a7.

[13]

J. F. Canny, Finding Edges and Lines in Images,, Technical Report AITR-720, (1983).

[14]

V. Caselles, R. Kimmel and G. Sapiro, Geodesic active contours,, Int. J. Computer Vision, 22 (1997), 61. doi: 10.1023/A:1007979827043.

[15]

T. F. Chan, S. Esedoglu and M. Nikolova, Algorithms for finding global minimizers of image segmentation and denoising models,, SIAM J. Applied Mathematics, 66 (2006), 1632. doi: 10.1137/040615286.

[16]

T. F. Chan, B. Y. Sandberg and L. A. Vese, Active contours without edges for vector-valued images,, J. Visual Commun. Image Representation, 11 (2000), 130. doi: 10.1006/jvci.1999.0442.

[17]

T. F. Chan and L. A. Vese, An efficient variational multiphase motion for the Mumford-Shah segmentation model,, Proc. Asilomar Conf. Signals, 1 (2000), 490. doi: 10.1109/ACSSC.2000.911004.

[18]

T. F. Chan and L. Vese, Active coutours without edges,, IEEE Trans. Image Processing, 10 (2001), 266. doi: 10.1109/83.902291.

[19]

T. F. Chan and J. H. Shen, Image Processing and Analysis: Variational, PDE, Wavelet and Stochastic Methods,, SIAM, (2005). doi: 10.1137/1.9780898717877.

[20]

G. Gilboa, N. Sochen and Y. Zeeni, Image enhancement and denoising by complex diffusion processes,, IEEE Trans Pattern Anal. Mach. Intell., 26 (2004), 1020. doi: 10.1109/TPAMI.2004.47.

[21]

T. Goldstein, X. Bresson and S. Osher, Geometric applications of the split Bregman method: Segmentation and surface reconstruction,, J. Sci. Computing, 45 (2010), 272. doi: 10.1007/s10915-009-9331-z.

[22]

C. Gout, C. Le Guyader and L. A. Vese, Segmentation under geometrical consitions with geodesic active contour and interpolation using level set methods,, Numerical Algorithms, 39 (2005), 155. doi: 10.1007/s11075-004-3627-8.

[23]

C. Le Guyader, N. Forcadel and C. Gout, Image segmentation using a generalized fast marching method,, Numerical Algorithms, 48 (2008), 189. doi: 10.1007/s11075-008-9183-x.

[24]

M. Jeon, M. Alexander, W. Pedrycz and N. Pizzi, Unsupervised hierarchical image segmentation with level set and additive operator splitting,, Pattern Recogn. Lett., 26 (2005), 1461. doi: 10.1016/j.patrec.2004.11.023.

[25]

M. Kass, A. Witkin and D. Terzopoulos, Snake: Active contour models,, Int. J. Computer Vision, 1 (1988), 321. doi: 10.1007/BF00133570.

[26]

S. Lankton and A. Tannenbaum, Localizing region-based active contours,, IEEE Trans. Image Processing, 17 (2008), 2029. doi: 10.1109/TIP.2008.2004611.

[27]

C. Li, C. Kao, J. Gore and Z. Ding, Implicit active contours driven by local binary fitting energy,, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (Washington, (2007), 1. doi: 10.1109/CVPR.2007.383014.

[28]

F. Li, M. K. Ng and C. Li, Variational fuzzy Mumford-Shah model for image segmentation,, SIAM J. Appl. Math., 70 (2010), 2750. doi: 10.1137/090753887.

[29]

J. Lie, M. Lysaker and X.-C. Tai, A binary level set model and some applications to Mumford-Shah image segmentation,, IEEE Trans. Image Processing, 15 (2006), 1171. doi: 10.1109/TIP.2005.863956.

[30]

R. Malladi, J. A. Sethian and B. C. Vemuri, Shape modeling with front propagation: A level set approach,, IEEE Trans. Pattern Anal. Mach. Intell., 17 (1995), 158. doi: 10.1109/34.368173.

[31]

A. Marquina and S. Osher, Explicit algorithms for a new time dependent model based on level set motion for nonlinear deblurring and noise removal,, SIAM J. Sci. Computing, 22 (2000), 387. doi: 10.1137/S1064827599351751.

[32]

H. Mewada and S. Patnaik, Variable kernel based Chan-Vese model for image segmentation,, Annual IEEE India Conference (INDICON), (2009), 1. doi: 10.1109/INDCON.2009.5409429.

[33]

J. Mille, Narrow band region-based active contours and surfaces for 2D and 3D segmentation,, Computer Vision and Image Understanding, 113 (2009), 946. doi: 10.1016/j.cviu.2009.05.002.

[34]

D. Mumford and J. Shah, Optimal approximation by piecewise smooth functions and associated variational problem,, Commun. Pure Appl. Math., 42 (1989), 577. doi: 10.1002/cpa.3160420503.

[35]

S. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces,, Springer Verlag, (2005).

[36]

S. Osher and J. Sethian, Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations,, J. Comput. Phys., 79 (1988), 12. doi: 10.1016/0021-9991(88)90002-2.

[37]

D. P. Peng, B. Merriman, S. Osher, H. K. Zhao and M. Kang, A PDE-Based fast local level set method,, J. Comput. Phys., 155 (1999), 410. doi: 10.1006/jcph.1999.6345.

[38]

J. M. S. Prewitt, Object enhancement and extraction,, in Picture Processing and Psychopictorics, (1970), 75.

[39]

J. A. Sethian, Fast marching methods,, SIAM Review, 41 (1999), 199. doi: 10.1137/S0036144598347059.

[40]

J. H. Shen, $\Gamma$-Convergence approximation to piecewise constant Mumford-Shah segmentation,, Advanced Concepts for Intelligent Vision Systems, 3708 (2005), 499. doi: 10.1007/11558484_63.

[41]

I. Sobel, An isotropic $3\times3$ image gradient operator,, Machine Vision for Three-Dimention Scenes, (1990), 376.

[42]

M. Sussman, P. Smereka and S. Osher, A level set approach for computing solutions to incompressible two-phase flow,, J. Comput. Phys., 114 (1994), 146. doi: 10.1006/jcph.1994.1155.

[43]

X. C. Tai, O. Christiansen, P. Lin and I. Skjaelaaen, Image segmentation using some piecewise constant level set methods with MBO type of projection,, Int. J. Computer Vision, 73 (2007), 61. doi: 10.1007/s11263-006-9140-x.

[44]

L. A. Vese and T. F. Chan, A multiphase level set framework for image segmentation using the Mumford and Shah model,, Int. J. Computer Vision, 50 (2002), 271.

[45]

H. K. Zhao, T. F. Chan, B. Merriman and S. Osher, A variational level set approach to multiphase motion,, J. Comput. Phys., 127 (1996), 179. doi: 10.1006/jcph.1996.0167.

[1]

Yuan-Nan Young, Doron Levy. Registration-Based Morphing of Active Contours for Segmentation of CT Scans. Mathematical Biosciences & Engineering, 2005, 2 (1) : 79-96. doi: 10.3934/mbe.2005.2.79

[2]

Frédéric Gibou, Doron Levy, Carlos Cárdenas, Pingyu Liu, Arthur Boyer. Partial Differential Equations-Based Segmentation for Radiotherapy Treatment Planning. Mathematical Biosciences & Engineering, 2005, 2 (2) : 209-226. doi: 10.3934/mbe.2005.2.209

[3]

Hayden Schaeffer. Active arcs and contours. Inverse Problems & Imaging, 2014, 8 (3) : 845-863. doi: 10.3934/ipi.2014.8.845

[4]

Fanghua Lin, Dan Liu. On the Betti numbers of level sets of solutions to elliptic equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4517-4529. doi: 10.3934/dcds.2016.36.4517

[5]

Ulrike Kant, Werner M. Seiler. Singularities in the geometric theory of differential equations. Conference Publications, 2011, 2011 (Special) : 784-793. doi: 10.3934/proc.2011.2011.784

[6]

Sun-Yung Alice Chang, Xi-Nan Ma, Paul Yang. Principal curvature estimates for the convex level sets of semilinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 1151-1164. doi: 10.3934/dcds.2010.28.1151

[7]

Wilhelm Schlag. Spectral theory and nonlinear partial differential equations: A survey. Discrete & Continuous Dynamical Systems - A, 2006, 15 (3) : 703-723. doi: 10.3934/dcds.2006.15.703

[8]

Eugenia N. Petropoulou, Panayiotis D. Siafarikas. Polynomial solutions of linear partial differential equations. Communications on Pure & Applied Analysis, 2009, 8 (3) : 1053-1065. doi: 10.3934/cpaa.2009.8.1053

[9]

Arnulf Jentzen. Taylor expansions of solutions of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 515-557. doi: 10.3934/dcdsb.2010.14.515

[10]

Nguyen Thieu Huy, Ngo Quy Dang. Dichotomy and periodic solutions to partial functional differential equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3127-3144. doi: 10.3934/dcdsb.2017167

[11]

Herbert Koch. Partial differential equations with non-Euclidean geometries. Discrete & Continuous Dynamical Systems - S, 2008, 1 (3) : 481-504. doi: 10.3934/dcdss.2008.1.481

[12]

Barbara Abraham-Shrauner. Exact solutions of nonlinear partial differential equations. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 577-582. doi: 10.3934/dcdss.2018032

[13]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

[14]

Laurence Guillot, Maïtine Bergounioux. Existence and uniqueness results for the gradient vector flow and geodesic active contours mixed model. Communications on Pure & Applied Analysis, 2009, 8 (4) : 1333-1349. doi: 10.3934/cpaa.2009.8.1333

[15]

Egil Bae, Xue-Cheng Tai, Wei Zhu. Augmented Lagrangian method for an Euler's elastica based segmentation model that promotes convex contours. Inverse Problems & Imaging, 2017, 11 (1) : 1-23. doi: 10.3934/ipi.2017001

[16]

Mario Roldan. Hyperbolic sets and entropy at the homological level. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3417-3433. doi: 10.3934/dcds.2016.36.3417

[17]

Paul Bracken. Exterior differential systems and prolongations for three important nonlinear partial differential equations. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1345-1360. doi: 10.3934/cpaa.2011.10.1345

[18]

Shouwen Fang, Peng Zhu. Differential Harnack estimates for backward heat equations with potentials under geometric flows. Communications on Pure & Applied Analysis, 2015, 14 (3) : 793-809. doi: 10.3934/cpaa.2015.14.793

[19]

Francisco Sánchez-Sánchez, Miguel Vargas-Valencia. Games with nested constraints given by a level structure. Journal of Dynamics & Games, 2018, 5 (2) : 95-107. doi: 10.3934/jdg.2018007

[20]

Michela Eleuteri, Pavel Krejčí. An asymptotic convergence result for a system of partial differential equations with hysteresis. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1131-1143. doi: 10.3934/cpaa.2007.6.1131

2016 Impact Factor: 1.094

Metrics

  • PDF downloads (1)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]