2014, 8(1): 259-291. doi: 10.3934/ipi.2014.8.259

Towards deconvolution to enhance the grid method for in-plane strain measurement

1. 

LORIA - projet Magrit, Université de Lorraine, Cnrs, Inria, Umr 7503, Campus Scientifique BP 239, 54506 Vanduvre-lès-Nancy cedex, France

2. 

Institut Pascal, Clermont Université, Cnrs Umr 6602, Université Blaise Pascal BP 10448, 63000 Clermont-Ferrand, France

Received  November 2012 Revised  June 2013 Published  March 2014

The grid method is one of the techniques available to measure in-plane displacement and strain components on a deformed material. A periodic grid is first transferred on the specimen surface, and images of the grid are compared before and after deformation. Windowed Fourier analysis-based techniques permit to estimate the in-plane displacement and strain maps. The aim of this article is to give a precise analysis of this estimation process. It is shown that the retrieved displacement and strain maps are actually a tight approximation of the convolution of the actual displacements and strains with the analysis window. The effect of digital image noise on the retrieved quantities is also characterized and it is proved that the resulting noise can be approximated by a stationary spatially correlated noise. These results are of utmost importance to enhance the metrological performance of the grid method, as shown in a separate article.
Citation: Frédéric Sur, Michel Grédiac. Towards deconvolution to enhance the grid method for in-plane strain measurement. Inverse Problems & Imaging, 2014, 8 (1) : 259-291. doi: 10.3934/ipi.2014.8.259
References:
[1]

P. Abrahamsen, A Review of Gaussian Random Fields and Correlation Functions,, Technical report, (1997).

[2]

T. M. Atanackovic and A. Guran, Theory of Elasticity for Scientists and Engineers,, Springer, (2000). doi: 10.1007/978-1-4612-1330-7.

[3]

F. Auger, E. Chassande-Mottin and P. Flandrin, On phase-magnitude relationships in the short-time Fourier transform,, IEEE Signal Processing Letters, 19 (2012), 267. doi: 10.1109/LSP.2012.2190279.

[4]

C. Badulescu, M. Bornert, J.-C. Dupré, S. Equis, M. Grédiac, J. Molimard, P. Picart, R. Rotinat and V. Valle, Demodulation of spatial carrier images: Performance analysis of several algorithms using a single image,, Experimental Mechanics, 53 (2013), 1357. doi: 10.1007/s11340-013-9741-6.

[5]

C. Badulescu, M. Grédiac and J.-D. Mathias, Investigation of the grid method for accurate in-plane strain measurement,, Measurement Science and Technology, 20 (2009). doi: 10.1088/0957-0233/20/9/095102.

[6]

C. Badulescu, M. Grédiac, J.-D. Mathias and D. Roux, A procedure for accurate one-dimensional strain measurement using the grid method,, Experimental Mechanics, 49 (2009), 841. doi: 10.1007/s11340-008-9203-8.

[7]

P. Balazs, D. Bayer, F. Jaillet and P. Søndergaard, The phase derivative around zeros of the short-time Fourier transform,, e-prints, (2011).

[8]

J. Boulanger, C. Kervrann, P. Bouthemy, P. Elbau, J.-B. Sibarita and J. Salamero, Patch-based nonlocal functional for denoising fluorescence microscopy image sequences,, IEEE Transaction on Medical Imaging, 29 (2010), 442. doi: 10.1109/TMI.2009.2033991.

[9]

L. Cohen, Time-Frequency Analysis,, Prentice-Hall, (1995).

[10]

N. Delprat, B. Escudié, Ph. Guillemain, R. Kronland-Martinet, P. Tchamitchian and B. Torrésani, Asymptotic wavelet and Gabor analysis: Extraction of instantaneous frequencies,, IEEE Transactions on Information Theory, 38 (1992), 644. doi: 10.1109/18.119728.

[11]

J.-C. Dupré, F. Brémand and A. Lagarde, Numerical spectral analysis of a grid: Application to strain measurements,, Optics and Lasers in Engineering, 18 (1993), 159. doi: 10.1016/0143-8166(93)90025-G.

[12]

H. Faraji and W. J. MacLean, CCD noise removal in digital images,, IEEE Transactions on Image Processing, 15 (2006), 2676. doi: 10.1109/TIP.2006.877363.

[13]

M. Grédiac and F. Sur, Effect of sensor noise on the resolution and spatial resolution of displacement and strain maps estimated with the grid method,, Strain, 50 (2014), 1. doi: 10.1111/str.12070.

[14]

M. Grédiac, F. Sur, C. Badulescu and J.-D. Mathias, Using deconvolution to improve the metrological performance of the grid method,, Optics and Lasers in Engineering, 51 (2013), 716. doi: 10.1016/j.optlaseng.2013.01.009.

[15]

E. Héripré, M. Dexet, J. Crépin, L. Gélébart, A. Roos, M. Bornert and D. Caldemaison, Coupling between experimental measurements and polycrystal finite element calculations for micromechanical study of metallic materials,, International Journal of Plasticity, 23 (2007), 1512. doi: 10.1016/j.ijplas.2007.01.009.

[16]

F. Jaillet, P. Balazs, M. Dörfler and N. Engelputzeder, On the structure of the phase around the zeros of the short-time Fourier transform,, in Proceedings of NAG/DAGA International Conference on Acoustics, (2009), 1584.

[17]

Q. Kemao, Two-dimensional windowed Fourier transform for fringe pattern analysis: Principles, applications and implementations,, Optics and Lasers in Engineering, 45 (2007), 304. doi: 10.1016/j.optlaseng.2005.10.012.

[18]

S. Mallat, A Wavelet Tour of Signal Processing,, (2nd edition) Academic Press, (1998).

[19]

F. Murthagh, J. L. Starck and A. Bijaoui, Image restoration with noise suppression using a multiresolution support,, Astronomy and Astrophysics, 112 (1995), 179.

[20]

R. D. Rajaona and P. Sulmont, A method of spectral analysis applied to periodic and pseudoperiodic signals,, Journal of Computational Physics, 61 (1985), 186. doi: 10.1016/0021-9991(85)90067-1.

[21]

F. Sur and M. Grédiac, Enhancing with deconvolution the metrological performance of the grid method for in-plane strain measurement,, in Proceedings of the IEEE International Conference on Acoustics, (2013). doi: 10.1109/ICASSP.2013.6637914.

[22]

Y. Surrel, Photomechanics,, Vol. 77 of Topics in Applied Physics, (2000), 55. doi: 10.1007/3-540-48800-6_3.

[23]

M. Sutton, J.-J. Orteu and H. Schreier, Image Correlation for Shape, Motion and Deformation Measurements,, Springer, (2009). doi: 10.1007/978-0-387-78747-3.

[24]

M. Takeda, H. Ina and S. Kobayashi, Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,, Journal of the Optical Society of America, 72 (1982), 156. doi: 10.1364/JOSA.72.000156.

show all references

References:
[1]

P. Abrahamsen, A Review of Gaussian Random Fields and Correlation Functions,, Technical report, (1997).

[2]

T. M. Atanackovic and A. Guran, Theory of Elasticity for Scientists and Engineers,, Springer, (2000). doi: 10.1007/978-1-4612-1330-7.

[3]

F. Auger, E. Chassande-Mottin and P. Flandrin, On phase-magnitude relationships in the short-time Fourier transform,, IEEE Signal Processing Letters, 19 (2012), 267. doi: 10.1109/LSP.2012.2190279.

[4]

C. Badulescu, M. Bornert, J.-C. Dupré, S. Equis, M. Grédiac, J. Molimard, P. Picart, R. Rotinat and V. Valle, Demodulation of spatial carrier images: Performance analysis of several algorithms using a single image,, Experimental Mechanics, 53 (2013), 1357. doi: 10.1007/s11340-013-9741-6.

[5]

C. Badulescu, M. Grédiac and J.-D. Mathias, Investigation of the grid method for accurate in-plane strain measurement,, Measurement Science and Technology, 20 (2009). doi: 10.1088/0957-0233/20/9/095102.

[6]

C. Badulescu, M. Grédiac, J.-D. Mathias and D. Roux, A procedure for accurate one-dimensional strain measurement using the grid method,, Experimental Mechanics, 49 (2009), 841. doi: 10.1007/s11340-008-9203-8.

[7]

P. Balazs, D. Bayer, F. Jaillet and P. Søndergaard, The phase derivative around zeros of the short-time Fourier transform,, e-prints, (2011).

[8]

J. Boulanger, C. Kervrann, P. Bouthemy, P. Elbau, J.-B. Sibarita and J. Salamero, Patch-based nonlocal functional for denoising fluorescence microscopy image sequences,, IEEE Transaction on Medical Imaging, 29 (2010), 442. doi: 10.1109/TMI.2009.2033991.

[9]

L. Cohen, Time-Frequency Analysis,, Prentice-Hall, (1995).

[10]

N. Delprat, B. Escudié, Ph. Guillemain, R. Kronland-Martinet, P. Tchamitchian and B. Torrésani, Asymptotic wavelet and Gabor analysis: Extraction of instantaneous frequencies,, IEEE Transactions on Information Theory, 38 (1992), 644. doi: 10.1109/18.119728.

[11]

J.-C. Dupré, F. Brémand and A. Lagarde, Numerical spectral analysis of a grid: Application to strain measurements,, Optics and Lasers in Engineering, 18 (1993), 159. doi: 10.1016/0143-8166(93)90025-G.

[12]

H. Faraji and W. J. MacLean, CCD noise removal in digital images,, IEEE Transactions on Image Processing, 15 (2006), 2676. doi: 10.1109/TIP.2006.877363.

[13]

M. Grédiac and F. Sur, Effect of sensor noise on the resolution and spatial resolution of displacement and strain maps estimated with the grid method,, Strain, 50 (2014), 1. doi: 10.1111/str.12070.

[14]

M. Grédiac, F. Sur, C. Badulescu and J.-D. Mathias, Using deconvolution to improve the metrological performance of the grid method,, Optics and Lasers in Engineering, 51 (2013), 716. doi: 10.1016/j.optlaseng.2013.01.009.

[15]

E. Héripré, M. Dexet, J. Crépin, L. Gélébart, A. Roos, M. Bornert and D. Caldemaison, Coupling between experimental measurements and polycrystal finite element calculations for micromechanical study of metallic materials,, International Journal of Plasticity, 23 (2007), 1512. doi: 10.1016/j.ijplas.2007.01.009.

[16]

F. Jaillet, P. Balazs, M. Dörfler and N. Engelputzeder, On the structure of the phase around the zeros of the short-time Fourier transform,, in Proceedings of NAG/DAGA International Conference on Acoustics, (2009), 1584.

[17]

Q. Kemao, Two-dimensional windowed Fourier transform for fringe pattern analysis: Principles, applications and implementations,, Optics and Lasers in Engineering, 45 (2007), 304. doi: 10.1016/j.optlaseng.2005.10.012.

[18]

S. Mallat, A Wavelet Tour of Signal Processing,, (2nd edition) Academic Press, (1998).

[19]

F. Murthagh, J. L. Starck and A. Bijaoui, Image restoration with noise suppression using a multiresolution support,, Astronomy and Astrophysics, 112 (1995), 179.

[20]

R. D. Rajaona and P. Sulmont, A method of spectral analysis applied to periodic and pseudoperiodic signals,, Journal of Computational Physics, 61 (1985), 186. doi: 10.1016/0021-9991(85)90067-1.

[21]

F. Sur and M. Grédiac, Enhancing with deconvolution the metrological performance of the grid method for in-plane strain measurement,, in Proceedings of the IEEE International Conference on Acoustics, (2013). doi: 10.1109/ICASSP.2013.6637914.

[22]

Y. Surrel, Photomechanics,, Vol. 77 of Topics in Applied Physics, (2000), 55. doi: 10.1007/3-540-48800-6_3.

[23]

M. Sutton, J.-J. Orteu and H. Schreier, Image Correlation for Shape, Motion and Deformation Measurements,, Springer, (2009). doi: 10.1007/978-0-387-78747-3.

[24]

M. Takeda, H. Ina and S. Kobayashi, Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,, Journal of the Optical Society of America, 72 (1982), 156. doi: 10.1364/JOSA.72.000156.

[1]

Zheng Dai, I.G. Rosen, Chuming Wang, Nancy Barnett, Susan E. Luczak. Using drinking data and pharmacokinetic modeling to calibrate transport model and blind deconvolution based data analysis software for transdermal alcohol biosensors. Mathematical Biosciences & Engineering, 2016, 13 (5) : 911-934. doi: 10.3934/mbe.2016023

[2]

Qiang Yin, Gongfa Li, Jianguo Zhu. Research on the method of step feature extraction for EOD robot based on 2D laser radar. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1415-1421. doi: 10.3934/dcdss.2015.8.1415

[3]

Xia Ji, Wei Cai. Accurate simulations of 2-D phase shift masks with a generalized discontinuous Galerkin (GDG) method. Discrete & Continuous Dynamical Systems - B, 2011, 15 (2) : 401-415. doi: 10.3934/dcdsb.2011.15.401

[4]

Jutta Bikowski, Jennifer L. Mueller. 2D EIT reconstructions using Calderon's method. Inverse Problems & Imaging, 2008, 2 (1) : 43-61. doi: 10.3934/ipi.2008.2.43

[5]

Chengxiang Wang, Li Zeng, Yumeng Guo, Lingli Zhang. Wavelet tight frame and prior image-based image reconstruction from limited-angle projection data. Inverse Problems & Imaging, 2017, 11 (6) : 917-948. doi: 10.3934/ipi.2017043

[6]

Henri Schurz. Stochastic heat equations with cubic nonlinearity and additive space-time noise in 2D. Conference Publications, 2013, 2013 (special) : 673-684. doi: 10.3934/proc.2013.2013.673

[7]

Shujuan Lü, Hong Lu, Zhaosheng Feng. Stochastic dynamics of 2D fractional Ginzburg-Landau equation with multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 575-590. doi: 10.3934/dcdsb.2016.21.575

[8]

Thomas März, Andreas Weinmann. Model-based reconstruction for magnetic particle imaging in 2D and 3D. Inverse Problems & Imaging, 2016, 10 (4) : 1087-1110. doi: 10.3934/ipi.2016033

[9]

Jia Li, Zuowei Shen, Rujie Yin, Xiaoqun Zhang. A reweighted $l^2$ method for image restoration with Poisson and mixed Poisson-Gaussian noise. Inverse Problems & Imaging, 2015, 9 (3) : 875-894. doi: 10.3934/ipi.2015.9.875

[10]

E. Fossas, J. M. Olm. Galerkin method and approximate tracking in a non-minimum phase bilinear system. Discrete & Continuous Dynamical Systems - B, 2007, 7 (1) : 53-76. doi: 10.3934/dcdsb.2007.7.53

[11]

Patrick Fischer, Charles-Henri Bruneau, Hamid Kellay. Multiresolution analysis for 2D turbulence. part 2: A physical interpretation. Discrete & Continuous Dynamical Systems - B, 2007, 7 (4) : 717-734. doi: 10.3934/dcdsb.2007.7.717

[12]

Jong Yeoul Park, Jae Ug Jeong. Pullback attractors for a $2D$-non-autonomous incompressible non-Newtonian fluid with variable delays. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2687-2702. doi: 10.3934/dcdsb.2016068

[13]

Michael Hintermüller, Tao Wu. Bilevel optimization for calibrating point spread functions in blind deconvolution. Inverse Problems & Imaging, 2015, 9 (4) : 1139-1169. doi: 10.3934/ipi.2015.9.1139

[14]

Michael Hintermüller, Monserrat Rincon-Camacho. An adaptive finite element method in $L^2$-TV-based image denoising. Inverse Problems & Imaging, 2014, 8 (3) : 685-711. doi: 10.3934/ipi.2014.8.685

[15]

Fangfang Dong, Yunmei Chen. A fractional-order derivative based variational framework for image denoising. Inverse Problems & Imaging, 2016, 10 (1) : 27-50. doi: 10.3934/ipi.2016.10.27

[16]

Vladimir Pozdyayev. 2D system analysis via dual problems and polynomial matrix inequalities. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 491-504. doi: 10.3934/naco.2016022

[17]

Patrick Fischer. Multiresolution analysis for 2D turbulence. Part 1: Wavelets vs cosine packets, a comparative study. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 659-686. doi: 10.3934/dcdsb.2005.5.659

[18]

Julia García-Luengo, Pedro Marín-Rubio, José Real, James C. Robinson. Pullback attractors for the non-autonomous 2D Navier--Stokes equations for minimally regular forcing. Discrete & Continuous Dynamical Systems - A, 2014, 34 (1) : 203-227. doi: 10.3934/dcds.2014.34.203

[19]

Vladimir V. Chepyzhov. Trajectory attractors for non-autonomous dissipative 2d Euler equations. Discrete & Continuous Dynamical Systems - B, 2015, 20 (3) : 811-832. doi: 10.3934/dcdsb.2015.20.811

[20]

S. Danilov. Non-universal features of forced 2D turbulence in the energy and enstrophy ranges. Discrete & Continuous Dynamical Systems - B, 2005, 5 (1) : 67-78. doi: 10.3934/dcdsb.2005.5.67

2016 Impact Factor: 1.094

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (15)

Other articles
by authors

[Back to Top]