2014, 4(2): 125-160. doi: 10.3934/mcrf.2014.4.125

Local controllability of 1D Schrödinger equations with bilinear control and minimal time

1. 

CMLS, Ecole Polytechnique, 91 128 Palaiseau cedex, France, France

Received  July 2012 Revised  January 2013 Published  February 2014

We consider a linear Schrödinger equation, on a bounded interval, with bilinear control.
    In [10], Beauchard and Laurent prove that, under an appropriate non degeneracy assumption, this system is controllable, locally around the ground state, in arbitrary time. In [18], Coron proves that a positive minimal time is required for this controllability result, on a particular degenerate example.
    In this article, we propose a general context for the local controllability to hold in large time, but not in small time. The existence of a positive minimal time is closely related to the behaviour of the second order term, in the power series expansion of the solution.
Citation: Karine Beauchard, Morgan Morancey. Local controllability of 1D Schrödinger equations with bilinear control and minimal time. Mathematical Control & Related Fields, 2014, 4 (2) : 125-160. doi: 10.3934/mcrf.2014.4.125
References:
[1]

R. Adami and U. Boscain, Controllability of the Schroedinger Equation via Intersection of Eigenvalues,, Proceedings of the 44rd IEEE Conference on Decision and Control December 12-15, (2005), 12.

[2]

J. Ball, J. Marsden and M. Slemrod, Controllability for distributed bilinear systems,, SIAM J. Control and Optim., 20 (1982), 575. doi: 10.1137/0320042.

[3]

L. Baudouin, A bilinear optimal control problem applied to a time dependent Hartree-Fock equation coupled with classical nuclear dynamics,, Port. Math. (N.S.), 63 (2006), 293.

[4]

L. Baudouin, O. Kavian and J.-P. Puel, Regularity for a Schrödinger equation with singular potential and application to bilinear optimal control,, J. of Differential Equations, 216 (2005), 188. doi: 10.1016/j.jde.2005.04.006.

[5]

L. Baudouin and J. Salomon, Constructive solutions of a bilinear control problem for a Schrödinger equation,, Systems and Control Letters, 57 (2008), 453. doi: 10.1016/j.sysconle.2007.11.002.

[6]

K. Beauchard, Local Controllability of a 1-D Schrödinger equation,, J. Math. Pures et Appl., 84 (2005), 851. doi: 10.1016/j.matpur.2005.02.005.

[7]

K. Beauchard, Controllability of a quantum particle in a 1D variable domain,, ESAIM:COCV, 14 (2008), 105. doi: 10.1051/cocv:2007047.

[8]

K. Beauchard, Local controllability and non controllability for a 1D wave equation with bilinear control,, J. Diff. Eq., 250 (2010), 2064. doi: 10.1016/j.jde.2010.10.008.

[9]

K. Beauchard and J.-M. Coron, Controllability of a quantum particle in a moving potential well,, J. Functional Analysis, 232 (2006), 328. doi: 10.1016/j.jfa.2005.03.021.

[10]

K. Beauchard and C. Laurent, Local controllability of 1D linear and nonlinear Schrödinger equations with bilinear control,, J. Math. Pures Appl., 94 (2010), 520. doi: 10.1016/j.matpur.2010.04.001.

[11]

K. Beauchard and M. Mirrahimi, Practical stabilization of a quantum particle in a one-dimensional infinite square potential well,, SIAM J. Contr. Optim., 48 (2009), 1179. doi: 10.1137/070704204.

[12]

J. F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems,, Springer Series in Operations Research, (2000).

[13]

U. Boscain, M. Caponigro, T. Chambrion and M. Sigalotti, A weak spectral condition for the controllability of the bilinear Schrödinger equation with application to the control of a rotating planar molecule,, Communications on Mathematical Physics, 311 (2012), 423. doi: 10.1007/s00220-012-1441-z.

[14]

N. Boussaïd, M. Caponigro and T. Chambrion, Weakly-coupled systems in quantum control,, IEEE Transactions on Automatic Control, 58 (2013), 2205. doi: 10.1109/TAC.2013.2255948.

[15]

E. Cancès, C. L. Bris and M. Pilot, Contrôle optimal bilinéaire d'une équation de Schrödinger,, CRAS Paris, 330 (2000), 567. doi: 10.1016/S0764-4442(00)00227-5.

[16]

E. Cerpa and E. Crépeau, Boundary controlability for the non linear korteweg-de vries equation on any critical domain,, Ann. IHP Analyse Non Linéaire, 26 (2009), 457. doi: 10.1016/j.anihpc.2007.11.003.

[17]

T. Chambrion, P. Mason, M. Sigalotti and M. Boscain, Controllability of the discrete-spectrum Schrödinger equation driven by an external field,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 329. doi: 10.1016/j.anihpc.2008.05.001.

[18]

J.-M. Coron, On the small-time local controllability of a quantum particule in a moving one-dimensional infinite square potential well,, C. R. Acad. Sciences Paris, 342 (2006), 103. doi: 10.1016/j.crma.2005.11.004.

[19]

J.-M. Coron, Control and Nonlinearity, vol. 136,, Mathematical Surveys and Monographs, (2007).

[20]

S. Ervedoza and J.-P. Puel, Approximate controllability for a system of schrödinger equations modeling a single trapped ion,, Ann.IHP: Nonlinear Analysis, 26 (2009), 2111. doi: 10.1016/j.anihpc.2009.01.005.

[21]

R. Ilner, H. Lange and H. Teismann, Limitations on the control of schrödinger equations,, ESAIM:COCV, 12 (2006), 615. doi: 10.1051/cocv:2006014.

[22]

A. Y. Khapalov, Bilinear controllability properties of a vibrating string with variable axial load and damping gain,, Dyn. Contin. Impuls. Syst. Ser A Math Anal., 10 (2003), 721.

[23]

A. Y. Khapalov, Controllability properties of a vibrating string with variable axial load,, Discrete Contin. Dyn. Syst., 11 (2004), 311. doi: 10.3934/dcds.2004.11.311.

[24]

A. Y. Khapalov, Reachability of nonnegative equilibrium states for the semilinear vibrating string by varying its axial load and the gain of damping,, ESAIM:COCV, 12 (2006), 231. doi: 10.1051/cocv:2006001.

[25]

M. Mirrahimi, Lyapunov control of a quantum particle in a decaying potential,, Ann. IHP: Nonlinear Analysis, 26 (2009), 1743. doi: 10.1016/j.anihpc.2008.09.006.

[26]

V. Nersesyan, Growth of Sobolev norms and controllability of Schrödinger equation,, Comm. Math. Phys., 290 (2009), 371. doi: 10.1007/s00220-009-0842-0.

[27]

V. Nersesyan, Global approximate controllability for Schrödinger equation in higher Sobolev norms and applications,, Ann. IHP Nonlinear Analysis, 27 (2010), 901. doi: 10.1016/j.anihpc.2010.01.004.

[28]

V. Nersesyan and H. Nersisyan, Global exact controllability in infinite time of Schrödinger equation,, J. Math. Pures et Appl., 97 (2012), 295. doi: 10.1016/j.matpur.2011.11.005.

[29]

V. Nersesyan and H. Nersisyan, Global exact controllability in infinite time of Schrödinger equation: multidimensional case,, (preprint)., ().

[30]

G. Turinici, On the controllability of bilinear quantum systems,, In C. Le Bris and M. Defranceschi, 74 (2000), 75. doi: 10.1007/978-3-642-57237-1_4.

show all references

References:
[1]

R. Adami and U. Boscain, Controllability of the Schroedinger Equation via Intersection of Eigenvalues,, Proceedings of the 44rd IEEE Conference on Decision and Control December 12-15, (2005), 12.

[2]

J. Ball, J. Marsden and M. Slemrod, Controllability for distributed bilinear systems,, SIAM J. Control and Optim., 20 (1982), 575. doi: 10.1137/0320042.

[3]

L. Baudouin, A bilinear optimal control problem applied to a time dependent Hartree-Fock equation coupled with classical nuclear dynamics,, Port. Math. (N.S.), 63 (2006), 293.

[4]

L. Baudouin, O. Kavian and J.-P. Puel, Regularity for a Schrödinger equation with singular potential and application to bilinear optimal control,, J. of Differential Equations, 216 (2005), 188. doi: 10.1016/j.jde.2005.04.006.

[5]

L. Baudouin and J. Salomon, Constructive solutions of a bilinear control problem for a Schrödinger equation,, Systems and Control Letters, 57 (2008), 453. doi: 10.1016/j.sysconle.2007.11.002.

[6]

K. Beauchard, Local Controllability of a 1-D Schrödinger equation,, J. Math. Pures et Appl., 84 (2005), 851. doi: 10.1016/j.matpur.2005.02.005.

[7]

K. Beauchard, Controllability of a quantum particle in a 1D variable domain,, ESAIM:COCV, 14 (2008), 105. doi: 10.1051/cocv:2007047.

[8]

K. Beauchard, Local controllability and non controllability for a 1D wave equation with bilinear control,, J. Diff. Eq., 250 (2010), 2064. doi: 10.1016/j.jde.2010.10.008.

[9]

K. Beauchard and J.-M. Coron, Controllability of a quantum particle in a moving potential well,, J. Functional Analysis, 232 (2006), 328. doi: 10.1016/j.jfa.2005.03.021.

[10]

K. Beauchard and C. Laurent, Local controllability of 1D linear and nonlinear Schrödinger equations with bilinear control,, J. Math. Pures Appl., 94 (2010), 520. doi: 10.1016/j.matpur.2010.04.001.

[11]

K. Beauchard and M. Mirrahimi, Practical stabilization of a quantum particle in a one-dimensional infinite square potential well,, SIAM J. Contr. Optim., 48 (2009), 1179. doi: 10.1137/070704204.

[12]

J. F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems,, Springer Series in Operations Research, (2000).

[13]

U. Boscain, M. Caponigro, T. Chambrion and M. Sigalotti, A weak spectral condition for the controllability of the bilinear Schrödinger equation with application to the control of a rotating planar molecule,, Communications on Mathematical Physics, 311 (2012), 423. doi: 10.1007/s00220-012-1441-z.

[14]

N. Boussaïd, M. Caponigro and T. Chambrion, Weakly-coupled systems in quantum control,, IEEE Transactions on Automatic Control, 58 (2013), 2205. doi: 10.1109/TAC.2013.2255948.

[15]

E. Cancès, C. L. Bris and M. Pilot, Contrôle optimal bilinéaire d'une équation de Schrödinger,, CRAS Paris, 330 (2000), 567. doi: 10.1016/S0764-4442(00)00227-5.

[16]

E. Cerpa and E. Crépeau, Boundary controlability for the non linear korteweg-de vries equation on any critical domain,, Ann. IHP Analyse Non Linéaire, 26 (2009), 457. doi: 10.1016/j.anihpc.2007.11.003.

[17]

T. Chambrion, P. Mason, M. Sigalotti and M. Boscain, Controllability of the discrete-spectrum Schrödinger equation driven by an external field,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 329. doi: 10.1016/j.anihpc.2008.05.001.

[18]

J.-M. Coron, On the small-time local controllability of a quantum particule in a moving one-dimensional infinite square potential well,, C. R. Acad. Sciences Paris, 342 (2006), 103. doi: 10.1016/j.crma.2005.11.004.

[19]

J.-M. Coron, Control and Nonlinearity, vol. 136,, Mathematical Surveys and Monographs, (2007).

[20]

S. Ervedoza and J.-P. Puel, Approximate controllability for a system of schrödinger equations modeling a single trapped ion,, Ann.IHP: Nonlinear Analysis, 26 (2009), 2111. doi: 10.1016/j.anihpc.2009.01.005.

[21]

R. Ilner, H. Lange and H. Teismann, Limitations on the control of schrödinger equations,, ESAIM:COCV, 12 (2006), 615. doi: 10.1051/cocv:2006014.

[22]

A. Y. Khapalov, Bilinear controllability properties of a vibrating string with variable axial load and damping gain,, Dyn. Contin. Impuls. Syst. Ser A Math Anal., 10 (2003), 721.

[23]

A. Y. Khapalov, Controllability properties of a vibrating string with variable axial load,, Discrete Contin. Dyn. Syst., 11 (2004), 311. doi: 10.3934/dcds.2004.11.311.

[24]

A. Y. Khapalov, Reachability of nonnegative equilibrium states for the semilinear vibrating string by varying its axial load and the gain of damping,, ESAIM:COCV, 12 (2006), 231. doi: 10.1051/cocv:2006001.

[25]

M. Mirrahimi, Lyapunov control of a quantum particle in a decaying potential,, Ann. IHP: Nonlinear Analysis, 26 (2009), 1743. doi: 10.1016/j.anihpc.2008.09.006.

[26]

V. Nersesyan, Growth of Sobolev norms and controllability of Schrödinger equation,, Comm. Math. Phys., 290 (2009), 371. doi: 10.1007/s00220-009-0842-0.

[27]

V. Nersesyan, Global approximate controllability for Schrödinger equation in higher Sobolev norms and applications,, Ann. IHP Nonlinear Analysis, 27 (2010), 901. doi: 10.1016/j.anihpc.2010.01.004.

[28]

V. Nersesyan and H. Nersisyan, Global exact controllability in infinite time of Schrödinger equation,, J. Math. Pures et Appl., 97 (2012), 295. doi: 10.1016/j.matpur.2011.11.005.

[29]

V. Nersesyan and H. Nersisyan, Global exact controllability in infinite time of Schrödinger equation: multidimensional case,, (preprint)., ().

[30]

G. Turinici, On the controllability of bilinear quantum systems,, In C. Le Bris and M. Defranceschi, 74 (2000), 75. doi: 10.1007/978-3-642-57237-1_4.

[1]

Felipe Hernandez. A decomposition for the Schrödinger equation with applications to bilinear and multilinear estimates. Communications on Pure & Applied Analysis, 2018, 17 (2) : 627-646. doi: 10.3934/cpaa.2018034

[2]

Ovidiu Cârjă, Alina Lazu. On the minimal time null controllability of the heat equation. Conference Publications, 2009, 2009 (Special) : 143-150. doi: 10.3934/proc.2009.2009.143

[3]

Camille Laurent. Internal control of the Schrödinger equation. Mathematical Control & Related Fields, 2014, 4 (2) : 161-186. doi: 10.3934/mcrf.2014.4.161

[4]

Patrick Martinez, Judith Vancostenoble. Exact controllability in "arbitrarily short time" of the semilinear wave equation. Discrete & Continuous Dynamical Systems - A, 2003, 9 (4) : 901-924. doi: 10.3934/dcds.2003.9.901

[5]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[6]

Kai Wang, Dun Zhao, Binhua Feng. Optimal nonlinearity control of Schrödinger equation. Evolution Equations & Control Theory, 2018, 7 (2) : 317-334. doi: 10.3934/eect.2018016

[7]

Grégoire Allaire, M. Vanninathan. Homogenization of the Schrödinger equation with a time oscillating potential. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 1-16. doi: 10.3934/dcdsb.2006.6.1

[8]

Shuya Kanagawa, Ben T. Nohara. The nonlinear Schrödinger equation created by the vibrations of an elastic plate and its dimensional expansion. Conference Publications, 2013, 2013 (special) : 415-426. doi: 10.3934/proc.2013.2013.415

[9]

Manuel González-Burgos, Sergio Guerrero, Jean Pierre Puel. Local exact controllability to the trajectories of the Boussinesq system via a fictitious control on the divergence equation. Communications on Pure & Applied Analysis, 2009, 8 (1) : 311-333. doi: 10.3934/cpaa.2009.8.311

[10]

Klaus-Jochen Engel, Marjeta Kramar FijavŽ. Exact and positive controllability of boundary control systems. Networks & Heterogeneous Media, 2017, 12 (2) : 319-337. doi: 10.3934/nhm.2017014

[11]

J. Cuevas, J. C. Eilbeck, N. I. Karachalios. Thresholds for breather solutions of the discrete nonlinear Schrödinger equation with saturable and power nonlinearity. Discrete & Continuous Dynamical Systems - A, 2008, 21 (2) : 445-475. doi: 10.3934/dcds.2008.21.445

[12]

Binhua Feng. On the blow-up solutions for the fractional nonlinear Schrödinger equation with combined power-type nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1785-1804. doi: 10.3934/cpaa.2018085

[13]

Nakao Hayashi, Elena I. Kaikina, Pavel I. Naumkin. Large time behavior of solutions to the generalized derivative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 1999, 5 (1) : 93-106. doi: 10.3934/dcds.1999.5.93

[14]

Olivier Goubet, Ezzeddine Zahrouni. On a time discretization of a weakly damped forced nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2008, 7 (6) : 1429-1442. doi: 10.3934/cpaa.2008.7.1429

[15]

Nakao Hayashi, Pavel I. Naumkin. Asymptotic behavior in time of solutions to the derivative nonlinear Schrödinger equation revisited. Discrete & Continuous Dynamical Systems - A, 1997, 3 (3) : 383-400. doi: 10.3934/dcds.1997.3.383

[16]

Holger Teismann. The Schrödinger equation with singular time-dependent potentials. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 705-722. doi: 10.3934/dcds.2000.6.705

[17]

Arnaud Heibig, Mohand Moussaoui. Exact controllability of the wave equation for domains with slits and for mixed boundary conditions. Discrete & Continuous Dynamical Systems - A, 1996, 2 (3) : 367-386. doi: 10.3934/dcds.1996.2.367

[18]

Claude Bardos, François Golse, Peter Markowich, Thierry Paul. On the classical limit of the Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5689-5709. doi: 10.3934/dcds.2015.35.5689

[19]

D.G. deFigueiredo, Yanheng Ding. Solutions of a nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2002, 8 (3) : 563-584. doi: 10.3934/dcds.2002.8.563

[20]

Frank Wusterhausen. Schrödinger equation with noise on the boundary. Conference Publications, 2013, 2013 (special) : 791-796. doi: 10.3934/proc.2013.2013.791

2017 Impact Factor: 0.542

Metrics

  • PDF downloads (1)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]