# American Institute of Mathematical Sciences

2014, 10(4): 1279-1296. doi: 10.3934/jimo.2014.10.1279

## A hybrid method combining genetic algorithm and Hooke-Jeeves method for constrained global optimization

 1 School of Science, Information, Technology and Engineering, University of Ballarat, Mt Helen, 3350, Victoria 2 School of Built Environment, Curtin University, Perth 4845, WA, Australia

Received  August 2012 Revised  October 2013 Published  February 2014

A new global optimization method combining genetic algorithm and Hooke-Jeeves method to solve a class of constrained optimization problems is studied in this paper. We first introduce the quadratic penalty function method and the exact penalty function method to transform the original constrained optimization problem with general equality and inequality constraints into a sequence of optimization problems only with box constraints. Then, the combination of genetic algorithm and Hooke-Jeeves method is applied to solve the transformed optimization problems. Since Hooke-Jeeves method is good at local search, our proposed method dramatically improves the accuracy and convergence rate of genetic algorithm. In view of the derivative-free of Hooke-Jeeves method, our method only requires information of objective function value which not only can overcome the computational difficulties caused by the ill-condition of the square penalty function, but also can handle the non-differentiability by the exact penalty function. Some well-known test problems are investigated. The numerical results show that our proposed method is efficient and robust.
Citation: Qiang Long, Changzhi Wu. A hybrid method combining genetic algorithm and Hooke-Jeeves method for constrained global optimization. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1279-1296. doi: 10.3934/jimo.2014.10.1279
##### References:
 [1] A. M. Bagirov and A. N. Ganjehlou, A quasisecant method for minimizing nonsmooth functions,, Optimization Methods & Software, 25 (2010), 3. doi: 10.1080/10556780903151565. [2] M. S. Bazaraa, H. D. Sherali and C. M. Shetty, Nonlinear Programming: Theory and Algorithm (Third Edition),, Wiley Online Library, (2006). doi: 10.1002/0471787779. [3] S. Ben Hamida and M. Schoenauer, Aschea: New results using adaptive segregational constraint handling,, in Evolutionary Computation, 1 (2002), 884. [4] Z. Cai and Y. Wang, A multiobjective optimization-based evolutionary algorithm for constrained optimization,, Evolutionary Computation, 10 (2006), 658. doi: 10.1109/TEVC.2006.872344. [5] G. Camp, Inequality-constrained stationary-value problems,, Journal of the Operations Research Society of America, 3 (1955), 548. doi: 10.1287/opre.3.4.548a. [6] C. Carroll and A. Fiacco, The created response surface technique for optimizing nonlinear restrained systems,, Operations Research, 9 (1961), 169. doi: 10.1287/opre.9.2.169. [7] R. Chelouah and P. Siarry, A hybrid method combining continuous tabu search and nelder-mead simplex algorithms for the global optimization of multiminima functions,, European Journal of Operational Research, 161 (2005), 636. doi: 10.1016/j.ejor.2003.08.053. [8] Z. Chen, S. Qiu and Y. Jiao, A penalty-free method for equality constrained optimization,, Journal of Industrial and Management Optimization, 9 (2013), 391. doi: 10.3934/jimo.2013.9.391. [9] F. E. Curtis and M. L. Overton, A sequential quadratic programming algorithm for nonconvex, nonsmooth constrained optimization,, SIAM Journal on Optimization, 22 (2012), 474. doi: 10.1137/090780201. [10] N. Durand and J. Alliot, A combined nelder-mead simplex and genetic algorithm,, in Proceedings of the Genetic and Evolutionary Computation Conference GECCO, 99 (1999), 1. [11] R. Fletcher, An ideal penalty function for constrained optimization,, IMA Journal of Applied Mathematics, 15 (1975), 319. doi: 10.1093/imamat/15.3.319. [12] D. E. Goldberg, Genetic algorithms in search,, optimization, (). [13] H. Greenberg, The generalized penalty-function/surrogate model,, Operations Research, 21 (1973), 162. doi: 10.1287/opre.21.1.162. [14] A. Hedar, Global optimization methods and codes,, , (). [15] A. Hedar and M. Fukushima, Hybrid simulated annealing and direct search method for nonlinear global optimization,, Department of Applied Mathematics & Physics Kyoto University, 17 (2002), 891. doi: 10.1080/1055678021000030084. [16] A. Hedar and M. Fukushima, Derivative-free filter simulated annealing method for constrained continuous global optimization,, Journal of Global Optimization, 35 (2006), 521. doi: 10.1007/s10898-005-3693-z. [17] E. Karas, A. Ribeiro, C. Sagastizábal and M. Solodov, A bundle-filter method for nonsmooth convex constrained optimization,, Mathematical Programming, 116 (2009), 297. doi: 10.1007/s10107-007-0123-7. [18] N. Karmitsa, A. Bagirov and M. Mäkelä, Comparing different nonsmooth minimization methods and software,, Optimization Methods and Software, 27 (2012), 131. doi: 10.1080/10556788.2010.526116. [19] S. Koziel and Z. Michalewicz, Evolutionary algorithms, homomorphous mappings, and constrained parameter optimization,, Evolutionary computation, 7 (1999), 19. doi: 10.1162/evco.1999.7.1.19. [20] O. Kramer, A review of constraint-handling techniques for evolution strategies,, Applied Computational Intelligence and Soft Computing, 2010 (). doi: 10.1155/2010/185063. [21] Y. Liu, An exterior point linear programming method based on inclusive nornal cone,, Journal of Industrial and Management Optimization, 6 (2010), 825. doi: 10.3934/jimo.2010.6.825. [22] D. Luenberger, Introduction to linear, and nonlinear programming., (). [23] R. Mallipeddi and P. N. Suganthan, Ensemble of constraint handling techniques,, Evolutionary Computation, 14 (2010), 561. doi: 10.1109/TEVC.2009.2033582. [24] E. Mezura-Montes and C. C. Coello, A simple multimembered evolution strategy to solve constrained optimization problems,, Evolutionary Computation, 9 (2005), 1. doi: 10.1109/TEVC.2004.836819. [25] W. Nakamura, Y. Narushima and H. Yabe, Nonlinear conjugrte gradient methods with sufficient descent properties for uniconstrained optimization,, Journal of Industrial and Management Optimization, 9 (2013), 595. doi: 10.3934/jimo.2013.9.595. [26] W. Pierskalla, Mathematical programming with increasing constraint functions,, Management Science, 15 (): 416. [27] T. P. Runarsson and X. Yao, Stochastic ranking for constrained evolutionary optimization,, Evolutionary Computation, 4 (2000), 284. doi: 10.1109/4235.873238. [28] J. Vasconcelos, J. Ramirez, R. Takahashi and R. Saldanha, Improvements in genetic algorithms,, Magnetics, 37 (2001), 3414. doi: 10.1109/20.952626. [29] Y. Wang, Z. Cai, Y. Zhou and Z. Fan, Constrained optimization based on hybrid evolutionary algorithm and adaptive constraint-handling technique,, Structural and Multidisciplinary Optimization, 37 (2009), 395. doi: 10.1007/s00158-008-0238-3. [30] C. Yu, K. L. Teo, L. Zhang and Y. Bai, A new exact penalty function method for continuous inequality constrained optimization problems,, Journal of Industrial and Management Optimization, 6 (2010). doi: 10.3934/jimo.2010.6.895. [31] Q. H. Zhiqiang Meng and C. Dang, A penalty function algorithm with objective parameters for nonlinear mathematical programming,, Journal of Industrial and Management Optimization, 5 (2009), 585. doi: 10.3934/jimo.2009.5.585.

show all references

##### References:
 [1] A. M. Bagirov and A. N. Ganjehlou, A quasisecant method for minimizing nonsmooth functions,, Optimization Methods & Software, 25 (2010), 3. doi: 10.1080/10556780903151565. [2] M. S. Bazaraa, H. D. Sherali and C. M. Shetty, Nonlinear Programming: Theory and Algorithm (Third Edition),, Wiley Online Library, (2006). doi: 10.1002/0471787779. [3] S. Ben Hamida and M. Schoenauer, Aschea: New results using adaptive segregational constraint handling,, in Evolutionary Computation, 1 (2002), 884. [4] Z. Cai and Y. Wang, A multiobjective optimization-based evolutionary algorithm for constrained optimization,, Evolutionary Computation, 10 (2006), 658. doi: 10.1109/TEVC.2006.872344. [5] G. Camp, Inequality-constrained stationary-value problems,, Journal of the Operations Research Society of America, 3 (1955), 548. doi: 10.1287/opre.3.4.548a. [6] C. Carroll and A. Fiacco, The created response surface technique for optimizing nonlinear restrained systems,, Operations Research, 9 (1961), 169. doi: 10.1287/opre.9.2.169. [7] R. Chelouah and P. Siarry, A hybrid method combining continuous tabu search and nelder-mead simplex algorithms for the global optimization of multiminima functions,, European Journal of Operational Research, 161 (2005), 636. doi: 10.1016/j.ejor.2003.08.053. [8] Z. Chen, S. Qiu and Y. Jiao, A penalty-free method for equality constrained optimization,, Journal of Industrial and Management Optimization, 9 (2013), 391. doi: 10.3934/jimo.2013.9.391. [9] F. E. Curtis and M. L. Overton, A sequential quadratic programming algorithm for nonconvex, nonsmooth constrained optimization,, SIAM Journal on Optimization, 22 (2012), 474. doi: 10.1137/090780201. [10] N. Durand and J. Alliot, A combined nelder-mead simplex and genetic algorithm,, in Proceedings of the Genetic and Evolutionary Computation Conference GECCO, 99 (1999), 1. [11] R. Fletcher, An ideal penalty function for constrained optimization,, IMA Journal of Applied Mathematics, 15 (1975), 319. doi: 10.1093/imamat/15.3.319. [12] D. E. Goldberg, Genetic algorithms in search,, optimization, (). [13] H. Greenberg, The generalized penalty-function/surrogate model,, Operations Research, 21 (1973), 162. doi: 10.1287/opre.21.1.162. [14] A. Hedar, Global optimization methods and codes,, , (). [15] A. Hedar and M. Fukushima, Hybrid simulated annealing and direct search method for nonlinear global optimization,, Department of Applied Mathematics & Physics Kyoto University, 17 (2002), 891. doi: 10.1080/1055678021000030084. [16] A. Hedar and M. Fukushima, Derivative-free filter simulated annealing method for constrained continuous global optimization,, Journal of Global Optimization, 35 (2006), 521. doi: 10.1007/s10898-005-3693-z. [17] E. Karas, A. Ribeiro, C. Sagastizábal and M. Solodov, A bundle-filter method for nonsmooth convex constrained optimization,, Mathematical Programming, 116 (2009), 297. doi: 10.1007/s10107-007-0123-7. [18] N. Karmitsa, A. Bagirov and M. Mäkelä, Comparing different nonsmooth minimization methods and software,, Optimization Methods and Software, 27 (2012), 131. doi: 10.1080/10556788.2010.526116. [19] S. Koziel and Z. Michalewicz, Evolutionary algorithms, homomorphous mappings, and constrained parameter optimization,, Evolutionary computation, 7 (1999), 19. doi: 10.1162/evco.1999.7.1.19. [20] O. Kramer, A review of constraint-handling techniques for evolution strategies,, Applied Computational Intelligence and Soft Computing, 2010 (). doi: 10.1155/2010/185063. [21] Y. Liu, An exterior point linear programming method based on inclusive nornal cone,, Journal of Industrial and Management Optimization, 6 (2010), 825. doi: 10.3934/jimo.2010.6.825. [22] D. Luenberger, Introduction to linear, and nonlinear programming., (). [23] R. Mallipeddi and P. N. Suganthan, Ensemble of constraint handling techniques,, Evolutionary Computation, 14 (2010), 561. doi: 10.1109/TEVC.2009.2033582. [24] E. Mezura-Montes and C. C. Coello, A simple multimembered evolution strategy to solve constrained optimization problems,, Evolutionary Computation, 9 (2005), 1. doi: 10.1109/TEVC.2004.836819. [25] W. Nakamura, Y. Narushima and H. Yabe, Nonlinear conjugrte gradient methods with sufficient descent properties for uniconstrained optimization,, Journal of Industrial and Management Optimization, 9 (2013), 595. doi: 10.3934/jimo.2013.9.595. [26] W. Pierskalla, Mathematical programming with increasing constraint functions,, Management Science, 15 (): 416. [27] T. P. Runarsson and X. Yao, Stochastic ranking for constrained evolutionary optimization,, Evolutionary Computation, 4 (2000), 284. doi: 10.1109/4235.873238. [28] J. Vasconcelos, J. Ramirez, R. Takahashi and R. Saldanha, Improvements in genetic algorithms,, Magnetics, 37 (2001), 3414. doi: 10.1109/20.952626. [29] Y. Wang, Z. Cai, Y. Zhou and Z. Fan, Constrained optimization based on hybrid evolutionary algorithm and adaptive constraint-handling technique,, Structural and Multidisciplinary Optimization, 37 (2009), 395. doi: 10.1007/s00158-008-0238-3. [30] C. Yu, K. L. Teo, L. Zhang and Y. Bai, A new exact penalty function method for continuous inequality constrained optimization problems,, Journal of Industrial and Management Optimization, 6 (2010). doi: 10.3934/jimo.2010.6.895. [31] Q. H. Zhiqiang Meng and C. Dang, A penalty function algorithm with objective parameters for nonlinear mathematical programming,, Journal of Industrial and Management Optimization, 5 (2009), 585. doi: 10.3934/jimo.2009.5.585.
 [1] Changjun Yu, Kok Lay Teo, Liansheng Zhang, Yanqin Bai. A new exact penalty function method for continuous inequality constrained optimization problems. Journal of Industrial & Management Optimization, 2010, 6 (4) : 895-910. doi: 10.3934/jimo.2010.6.895 [2] Zhongwen Chen, Songqiang Qiu, Yujie Jiao. A penalty-free method for equality constrained optimization. Journal of Industrial & Management Optimization, 2013, 9 (2) : 391-409. doi: 10.3934/jimo.2013.9.391 [3] Changjun Yu, Kok Lay Teo, Liansheng Zhang, Yanqin Bai. On a refinement of the convergence analysis for the new exact penalty function method for continuous inequality constrained optimization problem. Journal of Industrial & Management Optimization, 2012, 8 (2) : 485-491. doi: 10.3934/jimo.2012.8.485 [4] Regina S. Burachik, C. Yalçın Kaya. An update rule and a convergence result for a penalty function method. Journal of Industrial & Management Optimization, 2007, 3 (2) : 381-398. doi: 10.3934/jimo.2007.3.381 [5] Boshi Tian, Xiaoqi Yang, Kaiwen Meng. An interior-point $l_{\frac{1}{2}}$-penalty method for inequality constrained nonlinear optimization. Journal of Industrial & Management Optimization, 2016, 12 (3) : 949-973. doi: 10.3934/jimo.2016.12.949 [6] Wen-ling Zhao, Dao-jin Song. A global error bound via the SQP method for constrained optimization problem. Journal of Industrial & Management Optimization, 2007, 3 (4) : 775-781. doi: 10.3934/jimo.2007.3.775 [7] Yongjian Yang, Zhiyou Wu, Fusheng Bai. A filled function method for constrained nonlinear integer programming. Journal of Industrial & Management Optimization, 2008, 4 (2) : 353-362. doi: 10.3934/jimo.2008.4.353 [8] Ming Chen, Chongchao Huang. A power penalty method for a class of linearly constrained variational inequality. Journal of Industrial & Management Optimization, 2018, 14 (4) : 1381-1396. doi: 10.3934/jimo.2018012 [9] Cheng Ma, Xun Li, Ka-Fai Cedric Yiu, Yongjian Yang, Liansheng Zhang. On an exact penalty function method for semi-infinite programming problems. Journal of Industrial & Management Optimization, 2012, 8 (3) : 705-726. doi: 10.3934/jimo.2012.8.705 [10] Chien-Wen Chao, Shu-Cherng Fang, Ching-Jong Liao. A tropical cyclone-based method for global optimization. Journal of Industrial & Management Optimization, 2012, 8 (1) : 103-115. doi: 10.3934/jimo.2012.8.103 [11] A. M. Bagirov, Moumita Ghosh, Dean Webb. A derivative-free method for linearly constrained nonsmooth optimization. Journal of Industrial & Management Optimization, 2006, 2 (3) : 319-338. doi: 10.3934/jimo.2006.2.319 [12] Biao Qu, Naihua Xiu. A relaxed extragradient-like method for a class of constrained optimization problem. Journal of Industrial & Management Optimization, 2007, 3 (4) : 645-654. doi: 10.3934/jimo.2007.3.645 [13] Panagiotis Stinis. A hybrid method for the inviscid Burgers equation. Discrete & Continuous Dynamical Systems - A, 2003, 9 (4) : 793-799. doi: 10.3934/dcds.2003.9.793 [14] Yanhong Yuan, Hongwei Zhang, Liwei Zhang. A penalty method for generalized Nash equilibrium problems. Journal of Industrial & Management Optimization, 2012, 8 (1) : 51-65. doi: 10.3934/jimo.2012.8.51 [15] Ying Han, Zhenyu Lu, Sheng Chen. A hybrid inconsistent sustainable chemical industry evaluation method. Journal of Industrial & Management Optimization, 2018, 13 (5) : 1-15. doi: 10.3934/jimo.2018093 [16] Y. Goto, K. Ishii, T. Ogawa. Method of the distance function to the Bence-Merriman-Osher algorithm for motion by mean curvature. Communications on Pure & Applied Analysis, 2005, 4 (2) : 311-339. doi: 10.3934/cpaa.2005.4.311 [17] Liejune Shiau, Roland Glowinski. Operator splitting method for friction constrained dynamical systems. Conference Publications, 2005, 2005 (Special) : 806-815. doi: 10.3934/proc.2005.2005.806 [18] Ming Chen, Chongchao Huang. A power penalty method for the general traffic assignment problem with elastic demand. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1019-1030. doi: 10.3934/jimo.2014.10.1019 [19] Ming-Zheng Wang, M. Montaz Ali. Penalty-based SAA method of stochastic nonlinear complementarity problems. Journal of Industrial & Management Optimization, 2010, 6 (1) : 241-257. doi: 10.3934/jimo.2010.6.241 [20] Jian Hou, Liwei Zhang. A barrier function method for generalized Nash equilibrium problems. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1091-1108. doi: 10.3934/jimo.2014.10.1091

2017 Impact Factor: 0.994

## Metrics

• PDF downloads (2)
• HTML views (0)
• Cited by (19)

## Other articlesby authors

• on AIMS
• on Google Scholar

[Back to Top]