
Previous Article
On a risk model with randomized dividenddecision times
 JIMO Home
 This Issue

Next Article
A general variable neighborhood search for singlemachine total tardiness scheduling problem with stepdeteriorating jobs
Linear programming technique for solving intervalvalued constraint matrix games
1.  School of Mathematics and Computing Sciences, Guilin University of Electronic Technology, Guilin 541004, China 
2.  School of Management, Fuzhou University, Fujian 350108, China 
References:
[1] 
C. R. Bector and S. Chandra, Fuzzy Mathematical Programming and Fuzzy Matrix Games,, Springer Verlag, (2005). 
[2] 
C. R. Bector, S. Chandra and V. Vijay, Duality in linear programming with fuzzy parameters and matrix games with fuzzy payoffs,, Fuzzy Sets and Systems, 146 (2004), 253. doi: 10.1016/S01650114(03)002604. 
[3] 
C. R. Bector, S. Chandra and V. Vijay, Matrix games with fuzzy goals and fuzzy linear programming duality,, Fuzzy Optimization and Decision Making, 4 (2004), 255. 
[4] 
L. Campos, Fuzzy linear programming models to solve fuzzy matrix games,, Fuzzy Sets and Systems, 32 (1989), 275. doi: 10.1016/01650114(89)902601. 
[5] 
K. W. Chau, Application of a PSObased neural network in analysis of outcomes of construction claim,, Automation in Construction, 16 (2007), 642. doi: 10.1016/j.autcon.2006.11.008. 
[6] 
W. D. Collins and C. Y. Hu, Application of a PSObased neural network in analysis of outcomes of construction claim,, in Knowledge Processing with Interval and Soft Computing, (2008), 1. 
[7] 
M. Dresher, Games of Strategy Theory and Applications,, PrenticeHall, (1961). 
[8] 
D. Dubois and H. Prade, Fuzzy Sets and Systems Theory and Applications,, Academic Press, (1980). 
[9] 
A. Handan and A. Emrah, A graphical method for solving interval matrix games,, Abstract and Applied Analysis, (2011), 1. 
[10] 
M. Hladík, Interval valued bimatrix games,, Kybernetika, 46 (2010), 435. 
[11] 
M. Hladík, Support set invariancy for interval bimatrix games,, the 7th EUROPT Workshop Advances in Continuous Optimization, (2009), 3. 
[12] 
M. Larbani, Non cooperative fuzzy games in normal form: A survey,, Fuzzy Sets and Systems, 160 (2009), 3184. doi: 10.1016/j.fss.2009.02.026. 
[13] 
D. F. Li, Fuzzy Multiobjective Many Person Decision Makings and Games,, National Defense Industry Press, (2003). 
[14] 
D. F. Li, Lexicographic method for matrix games with payoffs of triangular fuzzy numbers,, International Journal of Uncertainty, 16 (2008), 371. doi: 10.1142/S0218488508005327. 
[15] 
D. F. Li, Mathematicalprogramming approach to matrix games with payoffs represented by Atanassov's intervalvalued intuitionistic fuzzy sets,, IEEE Transactions on Fuzzy Systems, 18 (2010), 1112. doi: 10.1109/TFUZZ.2010.2065812. 
[16] 
D. F. Li, Note on Linear programming technique to solve two person matrix games with interval payoffs,, AsiaPacific Journal of Operational Research, 28 (2011), 705. doi: 10.1142/S021759591100351X. 
[17] 
D. F. Li, Linear programming approach to solve intervalvalued matrix games,, Omega, 39 (2011), 655. doi: 10.1016/j.omega.2011.01.007. 
[18] 
D. F. Li and C. T. Cheng, Fuzzy multiobjective programming methods for fuzzy constrained matrix games with fuzzy numbers,, International Journal of Uncertainty, 10 (2002), 385. doi: 10.1142/S0218488502001545. 
[19] 
D. F. Li and J. X. Nan, A nonlinear programming approach to matrix games with payoffs of Atanassov's intuitionistic fuzzy sets,, International Journal of Uncertainty, 17 (2009), 585. doi: 10.1142/S0218488509006157. 
[20] 
D. F. Li, J. X. Nan and M. J. Zhang, Interval programming models for matrix games with interval payoffs,, Optimization Methods and Software, 27 (2012), 1. doi: 10.1080/10556781003796622. 
[21] 
S. T. Liu and C. Kao, Matrix games with interval data,, Computers and Industrial Engineering, 56 (2009), 1697. doi: 10.1016/j.cie.2008.06.002. 
[22] 
C. L. Loganathan and M. S. Annie, Fuzzy game value of the interval matrix,, International Journal of Engineering Research and Applications, 2 (2012), 250. 
[23] 
R. E. Moore, Method and Application of Interval Analysis,, SIAM, (1979). 
[24] 
J. X. Nan, D. F. Li and M. J. Zhang, A lexicographic method for matrix games with payoffs of triangular intuitionistic fuzzy numbers,, International Journal of Computational Intelligence Systems, 3 (2010), 280. doi: 10.2991/ijcis.2010.3.3.4. 
[25] 
P. K. Nayak and M. Pal, Linear programming technique to solve two person matrix games with interval payoffs,, AsiaPacific Journal of Operational Research, 26 (2009), 285. doi: 10.1142/S0217595909002201. 
[26] 
I. Nishizaki and M.Sakawa, Fuzzy and Multiobjective Games for Conflict Resolution,, Springer Verlag, (2001). 
[27] 
G. Owen, Game Theory,, 2nd edition, (1982). 
[28] 
V. N. Shashikhin, Antagonistic game with interval payoff functions,, Cybernetics and Systems Analysis, 40 (2004), 556. doi: 10.1023/B:CASA.0000047877.10921.d0. 
[29] 
L. J. Sun, Z. Y. Gao and Y. J. Wang, A Stackelberg game management model of the urban public transport,, Journal of Industrial and Management Optimization, 8 (2012), 507. doi: 10.3934/jimo.2012.8.507. 
[30] 
C. F. Wang and H. Yan, Optimal assignment of principalship and residual distribution for cooperative R and D,, Journal of Industrial and Management Optimization, 8 (2012), 127. 
[31] 
Z. H. Wang, W. X. Xing and S. C. Fang, Twoperson knapsack game,, Journal of Industrial and Management Optimization, 6 (2010), 847. doi: 10.3934/jimo.2010.6.847. 
show all references
References:
[1] 
C. R. Bector and S. Chandra, Fuzzy Mathematical Programming and Fuzzy Matrix Games,, Springer Verlag, (2005). 
[2] 
C. R. Bector, S. Chandra and V. Vijay, Duality in linear programming with fuzzy parameters and matrix games with fuzzy payoffs,, Fuzzy Sets and Systems, 146 (2004), 253. doi: 10.1016/S01650114(03)002604. 
[3] 
C. R. Bector, S. Chandra and V. Vijay, Matrix games with fuzzy goals and fuzzy linear programming duality,, Fuzzy Optimization and Decision Making, 4 (2004), 255. 
[4] 
L. Campos, Fuzzy linear programming models to solve fuzzy matrix games,, Fuzzy Sets and Systems, 32 (1989), 275. doi: 10.1016/01650114(89)902601. 
[5] 
K. W. Chau, Application of a PSObased neural network in analysis of outcomes of construction claim,, Automation in Construction, 16 (2007), 642. doi: 10.1016/j.autcon.2006.11.008. 
[6] 
W. D. Collins and C. Y. Hu, Application of a PSObased neural network in analysis of outcomes of construction claim,, in Knowledge Processing with Interval and Soft Computing, (2008), 1. 
[7] 
M. Dresher, Games of Strategy Theory and Applications,, PrenticeHall, (1961). 
[8] 
D. Dubois and H. Prade, Fuzzy Sets and Systems Theory and Applications,, Academic Press, (1980). 
[9] 
A. Handan and A. Emrah, A graphical method for solving interval matrix games,, Abstract and Applied Analysis, (2011), 1. 
[10] 
M. Hladík, Interval valued bimatrix games,, Kybernetika, 46 (2010), 435. 
[11] 
M. Hladík, Support set invariancy for interval bimatrix games,, the 7th EUROPT Workshop Advances in Continuous Optimization, (2009), 3. 
[12] 
M. Larbani, Non cooperative fuzzy games in normal form: A survey,, Fuzzy Sets and Systems, 160 (2009), 3184. doi: 10.1016/j.fss.2009.02.026. 
[13] 
D. F. Li, Fuzzy Multiobjective Many Person Decision Makings and Games,, National Defense Industry Press, (2003). 
[14] 
D. F. Li, Lexicographic method for matrix games with payoffs of triangular fuzzy numbers,, International Journal of Uncertainty, 16 (2008), 371. doi: 10.1142/S0218488508005327. 
[15] 
D. F. Li, Mathematicalprogramming approach to matrix games with payoffs represented by Atanassov's intervalvalued intuitionistic fuzzy sets,, IEEE Transactions on Fuzzy Systems, 18 (2010), 1112. doi: 10.1109/TFUZZ.2010.2065812. 
[16] 
D. F. Li, Note on Linear programming technique to solve two person matrix games with interval payoffs,, AsiaPacific Journal of Operational Research, 28 (2011), 705. doi: 10.1142/S021759591100351X. 
[17] 
D. F. Li, Linear programming approach to solve intervalvalued matrix games,, Omega, 39 (2011), 655. doi: 10.1016/j.omega.2011.01.007. 
[18] 
D. F. Li and C. T. Cheng, Fuzzy multiobjective programming methods for fuzzy constrained matrix games with fuzzy numbers,, International Journal of Uncertainty, 10 (2002), 385. doi: 10.1142/S0218488502001545. 
[19] 
D. F. Li and J. X. Nan, A nonlinear programming approach to matrix games with payoffs of Atanassov's intuitionistic fuzzy sets,, International Journal of Uncertainty, 17 (2009), 585. doi: 10.1142/S0218488509006157. 
[20] 
D. F. Li, J. X. Nan and M. J. Zhang, Interval programming models for matrix games with interval payoffs,, Optimization Methods and Software, 27 (2012), 1. doi: 10.1080/10556781003796622. 
[21] 
S. T. Liu and C. Kao, Matrix games with interval data,, Computers and Industrial Engineering, 56 (2009), 1697. doi: 10.1016/j.cie.2008.06.002. 
[22] 
C. L. Loganathan and M. S. Annie, Fuzzy game value of the interval matrix,, International Journal of Engineering Research and Applications, 2 (2012), 250. 
[23] 
R. E. Moore, Method and Application of Interval Analysis,, SIAM, (1979). 
[24] 
J. X. Nan, D. F. Li and M. J. Zhang, A lexicographic method for matrix games with payoffs of triangular intuitionistic fuzzy numbers,, International Journal of Computational Intelligence Systems, 3 (2010), 280. doi: 10.2991/ijcis.2010.3.3.4. 
[25] 
P. K. Nayak and M. Pal, Linear programming technique to solve two person matrix games with interval payoffs,, AsiaPacific Journal of Operational Research, 26 (2009), 285. doi: 10.1142/S0217595909002201. 
[26] 
I. Nishizaki and M.Sakawa, Fuzzy and Multiobjective Games for Conflict Resolution,, Springer Verlag, (2001). 
[27] 
G. Owen, Game Theory,, 2nd edition, (1982). 
[28] 
V. N. Shashikhin, Antagonistic game with interval payoff functions,, Cybernetics and Systems Analysis, 40 (2004), 556. doi: 10.1023/B:CASA.0000047877.10921.d0. 
[29] 
L. J. Sun, Z. Y. Gao and Y. J. Wang, A Stackelberg game management model of the urban public transport,, Journal of Industrial and Management Optimization, 8 (2012), 507. doi: 10.3934/jimo.2012.8.507. 
[30] 
C. F. Wang and H. Yan, Optimal assignment of principalship and residual distribution for cooperative R and D,, Journal of Industrial and Management Optimization, 8 (2012), 127. 
[31] 
Z. H. Wang, W. X. Xing and S. C. Fang, Twoperson knapsack game,, Journal of Industrial and Management Optimization, 6 (2010), 847. doi: 10.3934/jimo.2010.6.847. 
[1] 
Eduardo EspinosaAvila, Pablo Padilla Longoria, Francisco HernándezQuiroz. Game theory and dynamic programming in alternate games. Journal of Dynamics & Games, 2017, 4 (3) : 205216. doi: 10.3934/jdg.2017013 
[2] 
Behrouz Kheirfam. Multiparametric sensitivity analysis of the constraint matrix in piecewise linear fractional programming. Journal of Industrial & Management Optimization, 2010, 6 (2) : 347361. doi: 10.3934/jimo.2010.6.347 
[3] 
Astridh Boccabella, Roberto Natalini, Lorenzo Pareschi. On a continuous mixed strategies model for evolutionary game theory. Kinetic & Related Models, 2011, 4 (1) : 187213. doi: 10.3934/krm.2011.4.187 
[4] 
Anna Lisa Amadori, Astridh Boccabella, Roberto Natalini. A hyperbolic model of spatial evolutionary game theory. Communications on Pure & Applied Analysis, 2012, 11 (3) : 9811002. doi: 10.3934/cpaa.2012.11.981 
[5] 
Tinggui Chen, Yanhui Jiang. Research on operating mechanism for creative products supply chain based on game theory. Discrete & Continuous Dynamical Systems  S, 2015, 8 (6) : 11031112. doi: 10.3934/dcdss.2015.8.1103 
[6] 
Kai Du, Jianhui Huang, Zhen Wu. Linear quadratic meanfieldgame of backward stochastic differential systems. Mathematical Control & Related Fields, 2018, 8 (3&4) : 653678. doi: 10.3934/mcrf.2018028 
[7] 
Bao Qing Hu, Song Wang. A novel approach in uncertain programming part I: new arithmetic and order relation for interval numbers. Journal of Industrial & Management Optimization, 2006, 2 (4) : 351371. doi: 10.3934/jimo.2006.2.351 
[8] 
Georgios Konstantinidis. A game theoretic analysis of the cops and robber game. Journal of Dynamics & Games, 2014, 1 (4) : 599619. doi: 10.3934/jdg.2014.1.599 
[9] 
Yannick Viossat. Game dynamics and Nash equilibria. Journal of Dynamics & Games, 2014, 1 (3) : 537553. doi: 10.3934/jdg.2014.1.537 
[10] 
Jiahua Zhang, ShuCherng Fang, Yifan Xu, Ziteng Wang. A cooperative game with envy. Journal of Industrial & Management Optimization, 2017, 13 (4) : 20492066. doi: 10.3934/jimo.2017031 
[11] 
Eunha Shim, Beth Kochin, Alison Galvani. Insights from epidemiological game theory into genderspecific vaccination against rubella. Mathematical Biosciences & Engineering, 2009, 6 (4) : 839854. doi: 10.3934/mbe.2009.6.839 
[12] 
Hideo Deguchi. A reactiondiffusion system arising in game theory: existence of solutions and spatial dominance. Discrete & Continuous Dynamical Systems  B, 2017, 22 (10) : 38913901. doi: 10.3934/dcdsb.2017200 
[13] 
KingYeung Lam. Diracconcentrations in an integropde model from evolutionary game theory. Discrete & Continuous Dynamical Systems  B, 2017, 22 (11) : 118. doi: 10.3934/dcdsb.2018205 
[14] 
WaiKi Ching, SinMan Choi, Min Huang. Optimal service capacity in a multipleserver queueing system: A game theory approach. Journal of Industrial & Management Optimization, 2010, 6 (1) : 73102. doi: 10.3934/jimo.2010.6.73 
[15] 
Valery Y. Glizer, Oleg Kelis. Singular infinite horizon zerosum linearquadratic differential game: Saddlepoint equilibrium sequence. Numerical Algebra, Control & Optimization, 2017, 7 (1) : 120. doi: 10.3934/naco.2017001 
[16] 
David Cantala, Juan Sebastián Pereyra. Endogenous budget constraints in the assignment game. Journal of Dynamics & Games, 2015, 2 (3&4) : 207225. doi: 10.3934/jdg.2015002 
[17] 
Tao Li, Suresh P. Sethi. A review of dynamic Stackelberg game models. Discrete & Continuous Dynamical Systems  B, 2017, 22 (1) : 125159. doi: 10.3934/dcdsb.2017007 
[18] 
Zhenbo Wang, Wenxun Xing, ShuCherng Fang. Twoperson knapsack game. Journal of Industrial & Management Optimization, 2010, 6 (4) : 847860. doi: 10.3934/jimo.2010.6.847 
[19] 
Hyeng Keun Koo, Shanjian Tang, Zhou Yang. A Dynkin game under Knightian uncertainty. Discrete & Continuous Dynamical Systems  A, 2015, 35 (11) : 54675498. doi: 10.3934/dcds.2015.35.5467 
[20] 
Anna Belova. Rigorous enclosures of rotation numbers by interval methods. Journal of Computational Dynamics, 2016, 3 (1) : 8191. doi: 10.3934/jcd.2016004 
2017 Impact Factor: 0.994
Tools
Metrics
Other articles
by authors
[Back to Top]