2014, 7(3): 411-433. doi: 10.3934/dcdss.2014.7.411

Discussion about traffic junction modelling: Conservation laws VS Hamilton-Jacobi equations

1. 

Université Paris-Est, Ecole des Ponts ParisTech, CERMICS & IFSTTAR, GRETTIA, 6 & 8 avenue Blaise Pascal, Cité Descartes, Champs sur Marne, 77455 Marne la Vallée Cedex 2, France

2. 

Ifsttar, COSYS-GRETTIA, 14-20 boulevard Newton, Cité Descartes Champs sur Marne, 77447 Marne la Vallée Cedex 2

Received  June 2013 Revised  October 2013 Published  January 2014

In this paper, we consider a numerical scheme to solve first order Hamilton-Jacobi (HJ) equations posed on a junction. The main mathematical properties of the scheme are first recalled and then we give a traffic flow interpretation of the key elements. The scheme formulation is also adapted to compute the vehicles densities on a junction. The equivalent scheme for densities recovers the well-known Godunov scheme outside the junction point. We give two numerical illustrations for a merge and a diverge which are the two main types of traffic junctions. Some extensions to the junction model are finally discussed.
Citation: Guillaume Costeseque, Jean-Patrick Lebacque. Discussion about traffic junction modelling: Conservation laws VS Hamilton-Jacobi equations. Discrete & Continuous Dynamical Systems - S, 2014, 7 (3) : 411-433. doi: 10.3934/dcdss.2014.7.411
References:
[1]

C. Bardos, A. Y. Le Roux and J.-C. Nédélec, First order quasilinear equations with boundary conditions,, Comm. Partial Differential Equations, 4 (1979), 1017. doi: 10.1080/03605307908820117.

[2]

H. Bar-Gera and S. Ahn, Empirical macroscopic evaluation of freeway merge-ratios,, Transport. Res. C, 18 (2010), 457. doi: 10.1016/j.trc.2009.09.002.

[3]

G. Bretti, R. Natalini and B. Piccoli, Fast algorithms for the approximation of a fluid-dynamic model on networks,, Discrete Contin. Dyn. Syst. Ser. B, 6 (2006), 427. doi: 10.3934/dcdsb.2006.6.427.

[4]

G. Bretti, R. Natalini and B. Piccoli, Numerical approximations of a traffic flow model on networks,, Networks and Heterogeneous Media, 1 (2006), 57. doi: 10.3934/nhm.2006.1.57.

[5]

C. Buisson, J. P. Lebacque and J. B. Lesort, STRADA: A discretized macroscopic model of vehicular traffic flow in complex networks based on the Godunov scheme,, in Proceedings of the IEEE-SMC IMACS'96 Multiconference, 2 (1996), 976.

[6]

M. J. Cassidy and S. Ahn, Driver turn-taking behavior in congested freeway merges,, Transportation Research Record, 1934 (2005), 140. doi: 10.3141/1934-15.

[7]

C. Claudel and A. Bayen, Lax-Hopf based incorporation of internal boundary conditions into Hamilton-Jacobi equation. Part I: Theory,, IEEE Transactions on Automatic Control, 55 (2010), 1142. doi: 10.1109/TAC.2010.2041976.

[8]

G. M. Coclite, M. Garavello and B. Piccoli, Traffic flow on a road network,, SIAM J. Math. Anal., 36 (2005), 1862. doi: 10.1137/S0036141004402683.

[9]

R. Corthout, G. Flötteröd, F. Viti and C. M. J. Tampère, Non-unique flows in macroscopic first-order intersection models,, Transport. Res. B, 46 (2012), 343. doi: 10.1016/j.trb.2011.10.011.

[10]

G. Costeseque, J.-P. Lebacque and R. Monneau, A convergent scheme for Hamilton-Jacobi equations on a junction: Application to traffic,, submitted, (2013).

[11]

C. F. Daganzo, On the variational theory of traffic flow: Well-posedness, duality and applications,, Networks and Heterogeneous Media, 1 (2006), 601. doi: 10.3934/nhm.2006.1.601.

[12]

G. Flötteröd and J. Rohde, Operational macroscopic modeling of complex urban intersections,, Transport. Res. B, 45 (2011), 903.

[13]

M. Garavello and B. Piccoli, Traffic Flow on Networks,, AIMS Series on Applied Mathematics, (2006).

[14]

N. H. Gartner, C. J. Messer and A. K. Rathi, Revised Monograph of Traffic Flow Theory,, Online publication of the Transportation Research Board, (2001).

[15]

J. Gibb, A model of traffic flow capacity constraint through nodes for dynamic network loading with queue spillback,, Transportation Research Record: Journal of the Transportation Research Board, (2011), 113. doi: 10.3141/2263-13.

[16]

S. K. Godunov, A finite difference method for the numerical computation of discontinuous solutions of the equations of fluid dynamics,, Math. Sb., 47 (1959), 271.

[17]

S. Göttlich, M. Herty and U. Ziegler, Numerical discretization of Hamilton-Jacobi equations on networks,, Networks and Heterogeneous Media, 8 (2013), 685.

[18]

K. Han, B. Piccoli, T. L. Friesz and T. Yao, A continuous-time link-based kinematic wave model for dynamic traffic networks,, preprint, (2012).

[19]

H. Holden and N. Risebro, A mathematical model of traffic flow on a network of unidirectional roads,, SIAM J. Math. Anal., 4 (1995), 999. doi: 10.1137/S0036141093243289.

[20]

C. Imbert and R. Monneau, The vertex test function for Hamilton-Jacobi equations on networks,, preprint, (2013).

[21]

C. Imbert, R. Monneau and H. Zidani, A Hamilton-Jacobi approach to junction problems and application to traffic flows,, ESAIM Control Optim. Calc. Var., 19 (2013), 129. doi: 10.1051/cocv/2012002.

[22]

M. M. Khoshyaran and J. P. Lebacque, Internal state models for intersections in macroscopic traffic flow models,, Accepted in Proceedings of Traffic and Granular Flow 09, (2009).

[23]

J. A. Laval and L. Leclercq, The Hamilton-Jacobi partial differential equation and the three representations of traffic flow,, Transport. Res. B, 52 (2013), 17. doi: 10.1016/j.trb.2013.02.008.

[24]

J. P. Lebacque, Semi-macroscopic simulation of urban traffic,, in Proc. of the Int. 84 Minneapolis Summer Conference. AMSE, 4 (1984), 273.

[25]

J. P. Lebacque, The Godunov scheme and what it means for first order traffic flow models,, in 13th ISTTT Symposium, (1996), 647.

[26]

J. P. Lebacque and M. M. Khoshyaran, Macroscopic flow models (First order macroscopic traffic flow models for networks in the context of dynamic assignment),, in Transportation planning, (2002), 119. doi: 10.1007/0-306-48220-7_8.

[27]

J. P. Lebacque and M. M. Koshyaran, First-order macroscopic traffic flow models: intersection modeling, network modeling,, in Proceedings of the 16th International Symposium on the Transportation and Traffic Theory, (2005), 365.

[28]

M. J. Lighthill and G. B. Whitham, On kinetic waves. II. Theory of traffic flows on long crowded roads,, Proc. Roy. Soc. London Ser. A, 229 (1955), 317. doi: 10.1098/rspa.1955.0089.

[29]

G. F. Newell, A simplified theory of kinematic waves in highway traffic, (i) General theory, (ii) Queueing at freeway bottlenecks, (iii) Multi-destination flows,, Transport. Res. B, 4 (1993), 281.

[30]

P. I. Richards, Shock waves on the highway,, Oper. Res., 4 (1956), 42. doi: 10.1287/opre.4.1.42.

[31]

C. Tampere, R. Corthout, D. Cattrysse and L. Immers, A generic class of first order node models for dynamic macroscopic simulations of traffic flows,, Transport. Res. B, 45 (2011), 289. doi: 10.1016/j.trb.2010.06.004.

show all references

References:
[1]

C. Bardos, A. Y. Le Roux and J.-C. Nédélec, First order quasilinear equations with boundary conditions,, Comm. Partial Differential Equations, 4 (1979), 1017. doi: 10.1080/03605307908820117.

[2]

H. Bar-Gera and S. Ahn, Empirical macroscopic evaluation of freeway merge-ratios,, Transport. Res. C, 18 (2010), 457. doi: 10.1016/j.trc.2009.09.002.

[3]

G. Bretti, R. Natalini and B. Piccoli, Fast algorithms for the approximation of a fluid-dynamic model on networks,, Discrete Contin. Dyn. Syst. Ser. B, 6 (2006), 427. doi: 10.3934/dcdsb.2006.6.427.

[4]

G. Bretti, R. Natalini and B. Piccoli, Numerical approximations of a traffic flow model on networks,, Networks and Heterogeneous Media, 1 (2006), 57. doi: 10.3934/nhm.2006.1.57.

[5]

C. Buisson, J. P. Lebacque and J. B. Lesort, STRADA: A discretized macroscopic model of vehicular traffic flow in complex networks based on the Godunov scheme,, in Proceedings of the IEEE-SMC IMACS'96 Multiconference, 2 (1996), 976.

[6]

M. J. Cassidy and S. Ahn, Driver turn-taking behavior in congested freeway merges,, Transportation Research Record, 1934 (2005), 140. doi: 10.3141/1934-15.

[7]

C. Claudel and A. Bayen, Lax-Hopf based incorporation of internal boundary conditions into Hamilton-Jacobi equation. Part I: Theory,, IEEE Transactions on Automatic Control, 55 (2010), 1142. doi: 10.1109/TAC.2010.2041976.

[8]

G. M. Coclite, M. Garavello and B. Piccoli, Traffic flow on a road network,, SIAM J. Math. Anal., 36 (2005), 1862. doi: 10.1137/S0036141004402683.

[9]

R. Corthout, G. Flötteröd, F. Viti and C. M. J. Tampère, Non-unique flows in macroscopic first-order intersection models,, Transport. Res. B, 46 (2012), 343. doi: 10.1016/j.trb.2011.10.011.

[10]

G. Costeseque, J.-P. Lebacque and R. Monneau, A convergent scheme for Hamilton-Jacobi equations on a junction: Application to traffic,, submitted, (2013).

[11]

C. F. Daganzo, On the variational theory of traffic flow: Well-posedness, duality and applications,, Networks and Heterogeneous Media, 1 (2006), 601. doi: 10.3934/nhm.2006.1.601.

[12]

G. Flötteröd and J. Rohde, Operational macroscopic modeling of complex urban intersections,, Transport. Res. B, 45 (2011), 903.

[13]

M. Garavello and B. Piccoli, Traffic Flow on Networks,, AIMS Series on Applied Mathematics, (2006).

[14]

N. H. Gartner, C. J. Messer and A. K. Rathi, Revised Monograph of Traffic Flow Theory,, Online publication of the Transportation Research Board, (2001).

[15]

J. Gibb, A model of traffic flow capacity constraint through nodes for dynamic network loading with queue spillback,, Transportation Research Record: Journal of the Transportation Research Board, (2011), 113. doi: 10.3141/2263-13.

[16]

S. K. Godunov, A finite difference method for the numerical computation of discontinuous solutions of the equations of fluid dynamics,, Math. Sb., 47 (1959), 271.

[17]

S. Göttlich, M. Herty and U. Ziegler, Numerical discretization of Hamilton-Jacobi equations on networks,, Networks and Heterogeneous Media, 8 (2013), 685.

[18]

K. Han, B. Piccoli, T. L. Friesz and T. Yao, A continuous-time link-based kinematic wave model for dynamic traffic networks,, preprint, (2012).

[19]

H. Holden and N. Risebro, A mathematical model of traffic flow on a network of unidirectional roads,, SIAM J. Math. Anal., 4 (1995), 999. doi: 10.1137/S0036141093243289.

[20]

C. Imbert and R. Monneau, The vertex test function for Hamilton-Jacobi equations on networks,, preprint, (2013).

[21]

C. Imbert, R. Monneau and H. Zidani, A Hamilton-Jacobi approach to junction problems and application to traffic flows,, ESAIM Control Optim. Calc. Var., 19 (2013), 129. doi: 10.1051/cocv/2012002.

[22]

M. M. Khoshyaran and J. P. Lebacque, Internal state models for intersections in macroscopic traffic flow models,, Accepted in Proceedings of Traffic and Granular Flow 09, (2009).

[23]

J. A. Laval and L. Leclercq, The Hamilton-Jacobi partial differential equation and the three representations of traffic flow,, Transport. Res. B, 52 (2013), 17. doi: 10.1016/j.trb.2013.02.008.

[24]

J. P. Lebacque, Semi-macroscopic simulation of urban traffic,, in Proc. of the Int. 84 Minneapolis Summer Conference. AMSE, 4 (1984), 273.

[25]

J. P. Lebacque, The Godunov scheme and what it means for first order traffic flow models,, in 13th ISTTT Symposium, (1996), 647.

[26]

J. P. Lebacque and M. M. Khoshyaran, Macroscopic flow models (First order macroscopic traffic flow models for networks in the context of dynamic assignment),, in Transportation planning, (2002), 119. doi: 10.1007/0-306-48220-7_8.

[27]

J. P. Lebacque and M. M. Koshyaran, First-order macroscopic traffic flow models: intersection modeling, network modeling,, in Proceedings of the 16th International Symposium on the Transportation and Traffic Theory, (2005), 365.

[28]

M. J. Lighthill and G. B. Whitham, On kinetic waves. II. Theory of traffic flows on long crowded roads,, Proc. Roy. Soc. London Ser. A, 229 (1955), 317. doi: 10.1098/rspa.1955.0089.

[29]

G. F. Newell, A simplified theory of kinematic waves in highway traffic, (i) General theory, (ii) Queueing at freeway bottlenecks, (iii) Multi-destination flows,, Transport. Res. B, 4 (1993), 281.

[30]

P. I. Richards, Shock waves on the highway,, Oper. Res., 4 (1956), 42. doi: 10.1287/opre.4.1.42.

[31]

C. Tampere, R. Corthout, D. Cattrysse and L. Immers, A generic class of first order node models for dynamic macroscopic simulations of traffic flows,, Transport. Res. B, 45 (2011), 289. doi: 10.1016/j.trb.2010.06.004.

[1]

Claudio Marchi. On the convergence of singular perturbations of Hamilton-Jacobi equations. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1363-1377. doi: 10.3934/cpaa.2010.9.1363

[2]

Isabeau Birindelli, J. Wigniolle. Homogenization of Hamilton-Jacobi equations in the Heisenberg group . Communications on Pure & Applied Analysis, 2003, 2 (4) : 461-479. doi: 10.3934/cpaa.2003.2.461

[3]

Simone Göttlich, Ute Ziegler, Michael Herty. Numerical discretization of Hamilton--Jacobi equations on networks. Networks & Heterogeneous Media, 2013, 8 (3) : 685-705. doi: 10.3934/nhm.2013.8.685

[4]

Fabio Camilli, Paola Loreti, Naoki Yamada. Systems of convex Hamilton-Jacobi equations with implicit obstacles and the obstacle problem. Communications on Pure & Applied Analysis, 2009, 8 (4) : 1291-1302. doi: 10.3934/cpaa.2009.8.1291

[5]

Yasuhiro Fujita, Katsushi Ohmori. Inequalities and the Aubry-Mather theory of Hamilton-Jacobi equations. Communications on Pure & Applied Analysis, 2009, 8 (2) : 683-688. doi: 10.3934/cpaa.2009.8.683

[6]

Olga Bernardi, Franco Cardin. On $C^0$-variational solutions for Hamilton-Jacobi equations. Discrete & Continuous Dynamical Systems - A, 2011, 31 (2) : 385-406. doi: 10.3934/dcds.2011.31.385

[7]

Emeric Bouin. A Hamilton-Jacobi approach for front propagation in kinetic equations. Kinetic & Related Models, 2015, 8 (2) : 255-280. doi: 10.3934/krm.2015.8.255

[8]

Gawtum Namah, Mohammed Sbihi. A notion of extremal solutions for time periodic Hamilton-Jacobi equations. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 647-664. doi: 10.3934/dcdsb.2010.13.647

[9]

Antonio Avantaggiati, Paola Loreti, Cristina Pocci. Mixed norms, functional Inequalities, and Hamilton-Jacobi equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1855-1867. doi: 10.3934/dcdsb.2014.19.1855

[10]

Gui-Qiang Chen, Bo Su. Discontinuous solutions for Hamilton-Jacobi equations: Uniqueness and regularity. Discrete & Continuous Dynamical Systems - A, 2003, 9 (1) : 167-192. doi: 10.3934/dcds.2003.9.167

[11]

Martino Bardi, Yoshikazu Giga. Right accessibility of semicontinuous initial data for Hamilton-Jacobi equations . Communications on Pure & Applied Analysis, 2003, 2 (4) : 447-459. doi: 10.3934/cpaa.2003.2.447

[12]

Xifeng Su, Lin Wang, Jun Yan. Weak KAM theory for HAMILTON-JACOBI equations depending on unknown functions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6487-6522. doi: 10.3934/dcds.2016080

[13]

David McCaffrey. A representational formula for variational solutions to Hamilton-Jacobi equations. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1205-1215. doi: 10.3934/cpaa.2012.11.1205

[14]

Mihai Bostan, Gawtum Namah. Time periodic viscosity solutions of Hamilton-Jacobi equations. Communications on Pure & Applied Analysis, 2007, 6 (2) : 389-410. doi: 10.3934/cpaa.2007.6.389

[15]

Piermarco Cannarsa, Marco Mazzola, Carlo Sinestrari. Global propagation of singularities for time dependent Hamilton-Jacobi equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4225-4239. doi: 10.3934/dcds.2015.35.4225

[16]

Olga Bernardi, Franco Cardin. Minimax and viscosity solutions of Hamilton-Jacobi equations in the convex case. Communications on Pure & Applied Analysis, 2006, 5 (4) : 793-812. doi: 10.3934/cpaa.2006.5.793

[17]

Kaizhi Wang, Jun Yan. Lipschitz dependence of viscosity solutions of Hamilton-Jacobi equations with respect to the parameter. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1649-1659. doi: 10.3934/dcds.2016.36.1649

[18]

Joan-Andreu Lázaro-Camí, Juan-Pablo Ortega. The stochastic Hamilton-Jacobi equation. Journal of Geometric Mechanics, 2009, 1 (3) : 295-315. doi: 10.3934/jgm.2009.1.295

[19]

Mohamed Assellaou, Olivier Bokanowski, Hasnaa Zidani. Error estimates for second order Hamilton-Jacobi-Bellman equations. Approximation of probabilistic reachable sets. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 3933-3964. doi: 10.3934/dcds.2015.35.3933

[20]

Nalini Anantharaman, Renato Iturriaga, Pablo Padilla, Héctor Sánchez-Morgado. Physical solutions of the Hamilton-Jacobi equation. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 513-528. doi: 10.3934/dcdsb.2005.5.513

2016 Impact Factor: 0.781

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]