2013, 7(3): 461-488. doi: 10.3934/jmd.2013.7.461

Ergodic properties of $k$-free integers in number fields

1. 

Department of Mathematics, Altgeld Hall, 1409 W Green Street, Urbana, IL 61801, United States

2. 

School of Mathematics, University Walk, Bristol, BS8 1TW, United Kingdom

Received  March 2013 Revised  September 2013 Published  December 2013

Let $K/\mathbf{Q}$ be a degree-$d$ extension. Inside the ring of integers $\mathscr O_K$ we define the set of $k$-free integers $\mathscr F_k$ and a natural $\mathscr O_K$-action on the space of binary $\mathscr O_K$-indexed sequences, equipped with an $\mathscr O_K$-invariant probability measure associated to $\mathscr F_k$. We prove that this action is ergodic, has pure point spectrum, and is isomorphic to a $\mathbf Z^d$-action on a compact abelian group. In particular, it is not weakly mixing and has zero measure-theoretical entropy. This work generalizes the work of Cellarosi and Sinai [J. Eur. Math. Soc. (JEMS) 15 (2013), no. 4, 1343--1374] that considered the case $K=\mathbf{Q}$ and $k=2$.
Citation: Francesco Cellarosi, Ilya Vinogradov. Ergodic properties of $k$-free integers in number fields. Journal of Modern Dynamics, 2013, 7 (3) : 461-488. doi: 10.3934/jmd.2013.7.461
References:
[1]

M. Baake, R. V. Moody and P. A. B. Pleasants, Diffraction from visible lattice points and $k$th power free integers,, Discrete Math., 221 (2000), 3. doi: 10.1016/S0012-365X(99)00384-2.

[2]

V. Bergelson and A. Gorodnik, Weakly mixing group actions: A brief survey and an example,, in Modern Dynamical Systems and Applications, (2004), 3.

[3]

F. Cellarosi and Ya. G. Sinai, Ergodic properties of square-free numbers,, J. Eur. Math. Soc. (JEMS), 15 (2013), 1343. doi: 10.4171/JEMS/394.

[4]

R. R. Hall, The distribution of squarefree numbers,, J. Reine Angew. Math., 394 (1989), 107. doi: 10.1515/crll.1989.394.107.

[5]

P. R. Halmos and J. von Neumann, Operator methods in classical mechanics. II,, Ann. of Math. (2), 43 (1942), 332. doi: 10.2307/1968872.

[6]

D. R. Heath-Brown, The square sieve and consecutive square-free numbers,, Math. Ann., 266 (1984), 251. doi: 10.1007/BF01475576.

[7]

E. Hewitt and K. A. Ross, Abstract Harmonic Analysis. Vol. I. Structure of Topological Groups, Integration Theory, Group Representations,, Second edition, (1979).

[8]

I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus,, Second edition, (1991).

[9]

L. B. Koralov and Y. G. Sinai, Theory of probability and random processes,, Second edition, (2007).

[10]

J. Liu and P. Sarnak, The Möbius function and distal flows,, preprint., ().

[11]

G. W. Mackey, Ergodic transformation groups with a pure point spectrum,, Illinois J. Math., 8 (1964), 593.

[12]

L. Mirsky, Arithmetical pattern problems relating to divisibility by $r$th powers,, Proc. London Math. Soc. (2), 50 (1949), 497.

[13]

W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers,, Third edition, (2004).

[14]

J. Neukirch, Algebraic Number Theory,, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], (1999).

[15]

R. Peckner, Uniqueness of the measure of maximal entropy for the squarefree flow,, preprint, (2012).

[16]

P. A. B. Pleasants and C. Huck, Entropy and diffraction of the $k$-free points in $n$-dimensional lattices,, Discrete Comput. Geom., 50 (2013), 39. doi: 10.1007/s00454-013-9516-y.

[17]

V. A. Rokhlin, On the problem of the classification of automorphisms of Lebesgue spaces,, Doklady Akad. Nauk SSSR (N. S.), 58 (1947), 189.

[18]

V. A. Rokhlin, Unitary rings,, Doklady Akad. Nauk SSSR (N. S.), 59 (1948), 643.

[19]

P. Sarnak, Three lectures on the Möbius function randomness and dynamics (Lecture 1)., Available at: , ().

[20]

K. Schmidt, Dynamical Systems of Algebraic Origin,, [2011 reprint of the 1995 original] [MR1345152], (1995).

[21]

K. M. Tsang, The distribution of $r$-tuples of squarefree numbers,, Mathematika, 32 (1985), 265. doi: 10.1112/S0025579300011049.

[22]

J. von Neumann, Zur Operatorenmethode in der klassischen Mechanik,, Ann. of Math. (2), 33 (1932), 587. doi: 10.2307/1968537.

[23]

R. J. Zimmer, Ergodic actions with generalized discrete spectrum,, Illinois J. Math., 20 (1976), 555.

show all references

References:
[1]

M. Baake, R. V. Moody and P. A. B. Pleasants, Diffraction from visible lattice points and $k$th power free integers,, Discrete Math., 221 (2000), 3. doi: 10.1016/S0012-365X(99)00384-2.

[2]

V. Bergelson and A. Gorodnik, Weakly mixing group actions: A brief survey and an example,, in Modern Dynamical Systems and Applications, (2004), 3.

[3]

F. Cellarosi and Ya. G. Sinai, Ergodic properties of square-free numbers,, J. Eur. Math. Soc. (JEMS), 15 (2013), 1343. doi: 10.4171/JEMS/394.

[4]

R. R. Hall, The distribution of squarefree numbers,, J. Reine Angew. Math., 394 (1989), 107. doi: 10.1515/crll.1989.394.107.

[5]

P. R. Halmos and J. von Neumann, Operator methods in classical mechanics. II,, Ann. of Math. (2), 43 (1942), 332. doi: 10.2307/1968872.

[6]

D. R. Heath-Brown, The square sieve and consecutive square-free numbers,, Math. Ann., 266 (1984), 251. doi: 10.1007/BF01475576.

[7]

E. Hewitt and K. A. Ross, Abstract Harmonic Analysis. Vol. I. Structure of Topological Groups, Integration Theory, Group Representations,, Second edition, (1979).

[8]

I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus,, Second edition, (1991).

[9]

L. B. Koralov and Y. G. Sinai, Theory of probability and random processes,, Second edition, (2007).

[10]

J. Liu and P. Sarnak, The Möbius function and distal flows,, preprint., ().

[11]

G. W. Mackey, Ergodic transformation groups with a pure point spectrum,, Illinois J. Math., 8 (1964), 593.

[12]

L. Mirsky, Arithmetical pattern problems relating to divisibility by $r$th powers,, Proc. London Math. Soc. (2), 50 (1949), 497.

[13]

W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers,, Third edition, (2004).

[14]

J. Neukirch, Algebraic Number Theory,, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], (1999).

[15]

R. Peckner, Uniqueness of the measure of maximal entropy for the squarefree flow,, preprint, (2012).

[16]

P. A. B. Pleasants and C. Huck, Entropy and diffraction of the $k$-free points in $n$-dimensional lattices,, Discrete Comput. Geom., 50 (2013), 39. doi: 10.1007/s00454-013-9516-y.

[17]

V. A. Rokhlin, On the problem of the classification of automorphisms of Lebesgue spaces,, Doklady Akad. Nauk SSSR (N. S.), 58 (1947), 189.

[18]

V. A. Rokhlin, Unitary rings,, Doklady Akad. Nauk SSSR (N. S.), 59 (1948), 643.

[19]

P. Sarnak, Three lectures on the Möbius function randomness and dynamics (Lecture 1)., Available at: , ().

[20]

K. Schmidt, Dynamical Systems of Algebraic Origin,, [2011 reprint of the 1995 original] [MR1345152], (1995).

[21]

K. M. Tsang, The distribution of $r$-tuples of squarefree numbers,, Mathematika, 32 (1985), 265. doi: 10.1112/S0025579300011049.

[22]

J. von Neumann, Zur Operatorenmethode in der klassischen Mechanik,, Ann. of Math. (2), 33 (1932), 587. doi: 10.2307/1968537.

[23]

R. J. Zimmer, Ergodic actions with generalized discrete spectrum,, Illinois J. Math., 20 (1976), 555.

[1]

Jean-Pierre Conze, Y. Guivarc'h. Ergodicity of group actions and spectral gap, applications to random walks and Markov shifts. Discrete & Continuous Dynamical Systems - A, 2013, 33 (9) : 4239-4269. doi: 10.3934/dcds.2013.33.4239

[2]

Dariusz Skrenty. Absolutely continuous spectrum of some group extensions of Gaussian actions. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 365-378. doi: 10.3934/dcds.2010.26.365

[3]

Franz W. Kamber and Peter W. Michor. Completing Lie algebra actions to Lie group actions. Electronic Research Announcements, 2004, 10: 1-10.

[4]

Dongmei Zheng, Ercai Chen, Jiahong Yang. On large deviations for amenable group actions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 7191-7206. doi: 10.3934/dcds.2016113

[5]

Kengo Matsumoto. K-groups of the full group actions on one-sided topological Markov shifts. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3753-3765. doi: 10.3934/dcds.2013.33.3753

[6]

A. Katok and R. J. Spatzier. Nonstationary normal forms and rigidity of group actions. Electronic Research Announcements, 1996, 2: 124-133.

[7]

Xiaojun Huang, Jinsong Liu, Changrong Zhu. The Katok's entropy formula for amenable group actions. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4467-4482. doi: 10.3934/dcds.2018195

[8]

Yujun Ju, Dongkui Ma, Yupan Wang. Topological entropy of free semigroup actions for noncompact sets. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 995-1017. doi: 10.3934/dcds.2019041

[9]

Jean-François Biasse. Subexponential time relations in the class group of large degree number fields. Advances in Mathematics of Communications, 2014, 8 (4) : 407-425. doi: 10.3934/amc.2014.8.407

[10]

Xiankun Ren. Periodic measures are dense in invariant measures for residually finite amenable group actions with specification. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1657-1667. doi: 10.3934/dcds.2018068

[11]

Yoshikazu Katayama, Colin E. Sutherland and Masamichi Takesaki. The intrinsic invariant of an approximately finite dimensional factor and the cocycle conjugacy of discrete amenable group actions. Electronic Research Announcements, 1995, 1: 43-47.

[12]

Danijela Damjanović, Anatole Katok. Periodic cycle functions and cocycle rigidity for certain partially hyperbolic $\mathbb R^k$ actions. Discrete & Continuous Dynamical Systems - A, 2005, 13 (4) : 985-1005. doi: 10.3934/dcds.2005.13.985

[13]

Yves Guivarc'h. On the spectrum of a large subgroup of a semisimple group. Journal of Modern Dynamics, 2008, 2 (1) : 15-42. doi: 10.3934/jmd.2008.2.15

[14]

Thierry Barbot, Carlos Maquera. On integrable codimension one Anosov actions of $\RR^k$. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 803-822. doi: 10.3934/dcds.2011.29.803

[15]

Heping Liu, Yu Liu. Refinable functions on the Heisenberg group. Communications on Pure & Applied Analysis, 2007, 6 (3) : 775-787. doi: 10.3934/cpaa.2007.6.775

[16]

Federico Rodriguez Hertz, Jana Rodriguez Hertz. Cohomology free systems and the first Betti number. Discrete & Continuous Dynamical Systems - A, 2006, 15 (1) : 193-196. doi: 10.3934/dcds.2006.15.193

[17]

Livio Flaminio, Miguel Paternain. Linearization of cohomology-free vector fields. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 1031-1039. doi: 10.3934/dcds.2011.29.1031

[18]

Jorge Groisman. Expansive and fixed point free homeomorphisms of the plane. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1709-1721. doi: 10.3934/dcds.2012.32.1709

[19]

Anatole Katok, Federico Rodriguez Hertz. Uniqueness of large invariant measures for $\mathbb{Z}^k$ actions with Cartan homotopy data. Journal of Modern Dynamics, 2007, 1 (2) : 287-300. doi: 10.3934/jmd.2007.1.287

[20]

Changguang Dong. Separated nets arising from certain higher rank $\mathbb{R}^k$ actions on homogeneous spaces. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4231-4238. doi: 10.3934/dcds.2017180

2017 Impact Factor: 0.425

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]