2014, 4(1): 1-15. doi: 10.3934/mcrf.2014.4.1

Null controllability of retarded parabolic equations

1. 

Laboratoire de Mathématiques de Besançon, UMR CNRS 6623, Université de Franche-Comté, F25030 Besançon Cedex, France, France

2. 

École Nationale Supérieure des Travaux Publics, Rue Sidi Garidi, BP 32, 16051 Alger, Algeria

3. 

Département de Mathématiques, Faculté des Sciences Semlalia, Université Cadi Ayyad, Marrakech 40000, B.P. 2390

Received  May 2012 Revised  December 2012 Published  December 2013

We address in this work the null controllability problem for a linear heat equation with delay parameters. The control is exerted on a subdomain and we show how the global Carleman estimate due to Fursikov and Imanuvilov can be applied to derive results in this direction.
Citation: Farid Ammar Khodja, Cherif Bouzidi, Cédric Dupaix, Lahcen Maniar. Null controllability of retarded parabolic equations. Mathematical Control & Related Fields, 2014, 4 (1) : 1-15. doi: 10.3934/mcrf.2014.4.1
References:
[1]

F. Ammar-Khodja, A. Benabdallah, C. Dupaix and M. González-Burgos, A Kalman rank condition for the localized distributed controllability of a class of linear parabolic systems,, J. Evol. Equ., 9 (2009), 267. doi: 10.1007/s00028-009-0008-8.

[2]

F. Ammar-Khodja, A. Benabdallah, C. Dupaix and M. González-Burgos, Controllability for a class of reaction-diffusion systems: The generalized Kalman's condition,, C. R. Math. Acad. Sci. Paris, 345 (2007), 543. doi: 10.1016/j.crma.2007.10.023.

[3]

F. Ammar-Khodja, A. Benabdallah, C. Dupaix and M. González-Burgos, A generalization of the Kalman rank condition for time-dependent coupled linear parabolic systems,, Differ. Equ. Appl., 1 (2009), 427. doi: 10.7153/dea-01-24.

[4]

F. Ammar-Khodja, A. Benabdallah, M. González-Burgos and L. de Teresa, The Kalman condition for the boundary controllability of coupled parabolic systems. Bounds on biorthogonal families to complex matrix exponentials,, J. Math. Pures Appl. (9), 96 (2011), 555. doi: 10.1016/j.matpur.2011.06.005.

[5]

M. Artola, Sur les perturbations des équations d'évolution: Application à des problèmes avec retard,, Ann. Sci. École Norm. Sup. (4), 2 (1969), 137.

[6]

V. Barbu, Exact controllability of the superlinear heat equation,, Appl. Math. Optim., 42 (2000), 73. doi: 10.1007/s002450010004.

[7]

R. F. Curtain and H. Zwart, An Introduction to Infinite-Dimensional Linear Systems Theory,, Texts in Applied Mathematics, (1995). doi: 10.1007/978-1-4612-4224-6.

[8]

E. Fernández-Cara, M. González-Burgos and L. de Teresa, Boundary controllability of parabolic coupled equations,, J. Funct. Anal., 259 (2010), 1720. doi: 10.1016/j.jfa.2010.06.003.

[9]

E. Fernández-Cara and E. Zuazua, Null and approximate controllability for weakly blowing up semilinear heat equations,, Ann. Inst. H. Poincaré, 17 (2000), 583. doi: 10.1016/S0294-1449(00)00117-7.

[10]

A. Fursikov and O. Yu. Imanuvilov, Controllability of Evolution Equations,, Lecture Notes Series, (1996).

[11]

S.-I. Nakagiri, Optimal control of linear retarded systems in Banach spaces,, J. Math. Anal. and Appl., 120 (1986), 169. doi: 10.1016/0022-247X(86)90210-6.

[12]

S.-I. Nakagiri and M. Yamamoto, Controllability and observability of linear retarded systems in Banach spaces,, Int. J. Control, 49 (1989), 1489.

[13]

J. Zabczyk, Mathematical Control Theory: An Introduction,, Systems & Control: Foundations & Applications, (1992).

show all references

References:
[1]

F. Ammar-Khodja, A. Benabdallah, C. Dupaix and M. González-Burgos, A Kalman rank condition for the localized distributed controllability of a class of linear parabolic systems,, J. Evol. Equ., 9 (2009), 267. doi: 10.1007/s00028-009-0008-8.

[2]

F. Ammar-Khodja, A. Benabdallah, C. Dupaix and M. González-Burgos, Controllability for a class of reaction-diffusion systems: The generalized Kalman's condition,, C. R. Math. Acad. Sci. Paris, 345 (2007), 543. doi: 10.1016/j.crma.2007.10.023.

[3]

F. Ammar-Khodja, A. Benabdallah, C. Dupaix and M. González-Burgos, A generalization of the Kalman rank condition for time-dependent coupled linear parabolic systems,, Differ. Equ. Appl., 1 (2009), 427. doi: 10.7153/dea-01-24.

[4]

F. Ammar-Khodja, A. Benabdallah, M. González-Burgos and L. de Teresa, The Kalman condition for the boundary controllability of coupled parabolic systems. Bounds on biorthogonal families to complex matrix exponentials,, J. Math. Pures Appl. (9), 96 (2011), 555. doi: 10.1016/j.matpur.2011.06.005.

[5]

M. Artola, Sur les perturbations des équations d'évolution: Application à des problèmes avec retard,, Ann. Sci. École Norm. Sup. (4), 2 (1969), 137.

[6]

V. Barbu, Exact controllability of the superlinear heat equation,, Appl. Math. Optim., 42 (2000), 73. doi: 10.1007/s002450010004.

[7]

R. F. Curtain and H. Zwart, An Introduction to Infinite-Dimensional Linear Systems Theory,, Texts in Applied Mathematics, (1995). doi: 10.1007/978-1-4612-4224-6.

[8]

E. Fernández-Cara, M. González-Burgos and L. de Teresa, Boundary controllability of parabolic coupled equations,, J. Funct. Anal., 259 (2010), 1720. doi: 10.1016/j.jfa.2010.06.003.

[9]

E. Fernández-Cara and E. Zuazua, Null and approximate controllability for weakly blowing up semilinear heat equations,, Ann. Inst. H. Poincaré, 17 (2000), 583. doi: 10.1016/S0294-1449(00)00117-7.

[10]

A. Fursikov and O. Yu. Imanuvilov, Controllability of Evolution Equations,, Lecture Notes Series, (1996).

[11]

S.-I. Nakagiri, Optimal control of linear retarded systems in Banach spaces,, J. Math. Anal. and Appl., 120 (1986), 169. doi: 10.1016/0022-247X(86)90210-6.

[12]

S.-I. Nakagiri and M. Yamamoto, Controllability and observability of linear retarded systems in Banach spaces,, Int. J. Control, 49 (1989), 1489.

[13]

J. Zabczyk, Mathematical Control Theory: An Introduction,, Systems & Control: Foundations & Applications, (1992).

[1]

Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367

[2]

Peng Gao. Global Carleman estimate for the Kawahara equation and its applications. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1853-1874. doi: 10.3934/cpaa.2018088

[3]

Lucie Baudouin, Emmanuelle Crépeau, Julie Valein. Global Carleman estimate on a network for the wave equation and application to an inverse problem. Mathematical Control & Related Fields, 2011, 1 (3) : 307-330. doi: 10.3934/mcrf.2011.1.307

[4]

Chunpeng Wang, Yanan Zhou, Runmei Du, Qiang Liu. Carleman estimate for solutions to a degenerate convection-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-16. doi: 10.3934/dcdsb.2018133

[5]

Thuy N. T. Nguyen. Carleman estimates for semi-discrete parabolic operators with a discontinuous diffusion coefficient and applications to controllability. Mathematical Control & Related Fields, 2014, 4 (2) : 203-259. doi: 10.3934/mcrf.2014.4.203

[6]

Genni Fragnelli. Null controllability of degenerate parabolic equations in non divergence form via Carleman estimates. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 687-701. doi: 10.3934/dcdss.2013.6.687

[7]

Guillaume Olive. Boundary approximate controllability of some linear parabolic systems. Evolution Equations & Control Theory, 2014, 3 (1) : 167-189. doi: 10.3934/eect.2014.3.167

[8]

Farid Ammar Khodja, Franz Chouly, Michel Duprez. Partial null controllability of parabolic linear systems. Mathematical Control & Related Fields, 2016, 6 (2) : 185-216. doi: 10.3934/mcrf.2016001

[9]

Tohru Nakamura, Shinya Nishibata. Energy estimate for a linear symmetric hyperbolic-parabolic system in half line. Kinetic & Related Models, 2013, 6 (4) : 883-892. doi: 10.3934/krm.2013.6.883

[10]

Chun Zong, Gen Qi Xu. Observability and controllability analysis of blood flow network. Mathematical Control & Related Fields, 2014, 4 (4) : 521-554. doi: 10.3934/mcrf.2014.4.521

[11]

Bopeng Rao, Laila Toufayli, Ali Wehbe. Stability and controllability of a wave equation with dynamical boundary control. Mathematical Control & Related Fields, 2015, 5 (2) : 305-320. doi: 10.3934/mcrf.2015.5.305

[12]

Farid Ammar-Khodja, Assia Benabdallah, Manuel González-Burgos, Luz de Teresa. Recent results on the controllability of linear coupled parabolic problems: A survey. Mathematical Control & Related Fields, 2011, 1 (3) : 267-306. doi: 10.3934/mcrf.2011.1.267

[13]

El Mustapha Ait Ben Hassi, Farid Ammar khodja, Abdelkarim Hajjaj, Lahcen Maniar. Carleman Estimates and null controllability of coupled degenerate systems. Evolution Equations & Control Theory, 2013, 2 (3) : 441-459. doi: 10.3934/eect.2013.2.441

[14]

Ngoc Minh Trang Vu, Laurent Lefèvre. Finite rank distributed control for the resistive diffusion equation using damping assignment. Evolution Equations & Control Theory, 2015, 4 (2) : 205-220. doi: 10.3934/eect.2015.4.205

[15]

A. V. Rezounenko. Inertial manifolds with delay for retarded semilinear parabolic equations. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 829-840. doi: 10.3934/dcds.2000.6.829

[16]

Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571

[17]

Eduardo Cerpa. Null controllability and stabilization of the linear Kuramoto-Sivashinsky equation. Communications on Pure & Applied Analysis, 2010, 9 (1) : 91-102. doi: 10.3934/cpaa.2010.9.91

[18]

Kareem T. Elgindy. Optimal control of a parabolic distributed parameter system using a fully exponentially convergent barycentric shifted gegenbauer integral pseudospectral method. Journal of Industrial & Management Optimization, 2018, 14 (2) : 473-496. doi: 10.3934/jimo.2017056

[19]

Daoyi Xu, Weisong Zhou. Existence-uniqueness and exponential estimate of pathwise solutions of retarded stochastic evolution systems with time smooth diffusion coefficients. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 2161-2180. doi: 10.3934/dcds.2017093

[20]

Franck Boyer, Guillaume Olive. Approximate controllability conditions for some linear 1D parabolic systems with space-dependent coefficients. Mathematical Control & Related Fields, 2014, 4 (3) : 263-287. doi: 10.3934/mcrf.2014.4.263

2017 Impact Factor: 0.542

Metrics

  • PDF downloads (2)
  • HTML views (0)
  • Cited by (0)

[Back to Top]