2014, 4(1): 59-74. doi: 10.3934/naco.2014.4.59

Grasping force based manipulation for multifingered hand-arm Robot using neural networks

1. 

Department of Electrical Engineering, I-Shou University, Kaohsiung City 84001, Taiwan, Taiwan

Received  June 2013 Revised  November 2013 Published  December 2013

Multifingered hand-arm robots play an important role in dynamic manipulation tasks. They can grasp and move various shaped objects. It is important to plan the motion of the arm and appropriately control the grasping forces for the multifingered hand-arm robots. In this paper, we perform the grasping force based manipulation of the multifingered hand-arm robot by using neural networks. The motion parameters are analyzed and planned with the constraint of the multi-arms kinematics. The optimal grasping force problem is recast as the second-order cone program. The semismooth Newton method with the Fischer-Burmeister function is then used to efficiently solve the second-order cone program. The neural network manipulation system is obtained via the fitting of the data that are generated from the optimal manipulation simulations. The simulations of optimal grasping manipulation are performed to demonstrate the effectiveness of the proposed approach.
Citation: Chun-Hsu Ko, Jing-Kun Chen. Grasping force based manipulation for multifingered hand-arm Robot using neural networks. Numerical Algebra, Control & Optimization, 2014, 4 (1) : 59-74. doi: 10.3934/naco.2014.4.59
References:
[1]

P. H. Borgstrom, M. A. Batalinx, G. S. Sukhatmez and W. J. Kaiser, Weighted barrier functions for computation of force distributions with friction cone constraints,, IEEE Int. Conf. Robot. Autom., (2010), 785.

[2]

S. P. Boyd and B. Wegbreit, Fast computation of optimal contact forces,, IEEE Trans. Robot., 23 (2007), 1117.

[3]

W. Chung, C. Rhee, Y. Shim, H. Lee and S. Park, Door-opening control of a service robot using the multifingered robot hand,, IEEE Trans. Ind. Electron., 56 (2009), 3975.

[4]

L. Han, J. C. Trinkle and Z. X. Li, Grasp analysis as linear matrix inequality problems,, IEEE Trans. Robot. Autom., 16 (2000), 663.

[5]

M. H. Hassoun, Fundamentals of Artificial Neural Networks,, MIT Press, (1995).

[6]

U. Helmke, K. Huper and J. B. Moore, Quadratically convergent algorithms for optimal dexterous hand grasping,, IEEE Trans. Robot. Autom., 18 (2002), 138.

[7]

A. Kawamura, K. Tahara, R. Kurazume and T. Hasegawa, Dynamic grasping for an arbitrary polyhedral object by a multi-fingered hand-arm system,, IEEE/RSJ Int. Conf. Intel. Robots Syst., (2009), 2264.

[8]

C. H. Ko, J. S. Chen and C. Y. Yang, Recurrent neural networks for solving second-order cone programs,, Neurocomputing, 74 (2011), 3646.

[9]

C. H. Ko, S. H. Lin and J. K. Chen, Motion planning of multifingered hand-arm system with optimal grasping force,, IEEE 2nd Int. Symp. Next-Generation Electron., (2013), 262.

[10]

V. Lippiello, B. Siciliano and L. Villani, A grasping force optimization algorithm for multiarm robots with multifingered hands,, IEEE Trans. Robot., 29 (2013), 55.

[11]

Y. H. Liu, Qualitative test and force optimization of 3D frictional form-closure grasps using linear programming,, IEEE Trans. Robot. Autom., 15 (1999), 163.

[12]

R. Michalec and A. Micaelli, Optimal tightening forces for multi-fingered robust manipulation,, IEEE/RSJ Int. Conf. Intel. Robots Syst., (2009), 4160.

[13]

R. M. Murray, Z. Li and S. S. Sastry, Mathematical Introduction to Robotic Manipulation,, CRC Press, (1994).

[14]

S. H. Pan and J. S. Chen, A semismooth Newton method for SOCCPs based on a one-parametric class of SOC complementarity functions,, Comp. Optim. Appl., 45 (2010), 59. doi: 10.1007/s10589-008-9166-9.

[15]

D. Prattichizzo, M. Malvezzi, M. Aggravi and T. Wimböck, Object motion-decoupled internal force control for a compliant multifingered hand,, IEEE Int. Conf. Robot. Autom., (2012), 1508.

[16]

L. Qi and J. Sun, A nonsmooth version of Newtons method,, Mathematical Programming, 58 (1993), 353. doi: 10.1007/BF01581275.

[17]

H. Scharfe, N. Hendrich and J. Zhang, Hybrid physics simulation of multi-fingered hands for dexterous in-hand manipulation,, IEEE Int. Conf. Robot. Autom., (2012), 3777.

[18]

T. Tsuji, K. Harada and K. Kaneko, Easy and fast evaluation of grasp stability by using ellipsoidal approximation of friction cone,, IEEE/RSJ Int. Conf. Intel. Robots Syst., (2009), 1830.

[19]

J. Xu and Z. Li, A kinematic model of finger gaits by multifingered hand as hybrid automaton,, IEEE Trans. Autom. Sci. Eng., 50 (2008), 467.

show all references

References:
[1]

P. H. Borgstrom, M. A. Batalinx, G. S. Sukhatmez and W. J. Kaiser, Weighted barrier functions for computation of force distributions with friction cone constraints,, IEEE Int. Conf. Robot. Autom., (2010), 785.

[2]

S. P. Boyd and B. Wegbreit, Fast computation of optimal contact forces,, IEEE Trans. Robot., 23 (2007), 1117.

[3]

W. Chung, C. Rhee, Y. Shim, H. Lee and S. Park, Door-opening control of a service robot using the multifingered robot hand,, IEEE Trans. Ind. Electron., 56 (2009), 3975.

[4]

L. Han, J. C. Trinkle and Z. X. Li, Grasp analysis as linear matrix inequality problems,, IEEE Trans. Robot. Autom., 16 (2000), 663.

[5]

M. H. Hassoun, Fundamentals of Artificial Neural Networks,, MIT Press, (1995).

[6]

U. Helmke, K. Huper and J. B. Moore, Quadratically convergent algorithms for optimal dexterous hand grasping,, IEEE Trans. Robot. Autom., 18 (2002), 138.

[7]

A. Kawamura, K. Tahara, R. Kurazume and T. Hasegawa, Dynamic grasping for an arbitrary polyhedral object by a multi-fingered hand-arm system,, IEEE/RSJ Int. Conf. Intel. Robots Syst., (2009), 2264.

[8]

C. H. Ko, J. S. Chen and C. Y. Yang, Recurrent neural networks for solving second-order cone programs,, Neurocomputing, 74 (2011), 3646.

[9]

C. H. Ko, S. H. Lin and J. K. Chen, Motion planning of multifingered hand-arm system with optimal grasping force,, IEEE 2nd Int. Symp. Next-Generation Electron., (2013), 262.

[10]

V. Lippiello, B. Siciliano and L. Villani, A grasping force optimization algorithm for multiarm robots with multifingered hands,, IEEE Trans. Robot., 29 (2013), 55.

[11]

Y. H. Liu, Qualitative test and force optimization of 3D frictional form-closure grasps using linear programming,, IEEE Trans. Robot. Autom., 15 (1999), 163.

[12]

R. Michalec and A. Micaelli, Optimal tightening forces for multi-fingered robust manipulation,, IEEE/RSJ Int. Conf. Intel. Robots Syst., (2009), 4160.

[13]

R. M. Murray, Z. Li and S. S. Sastry, Mathematical Introduction to Robotic Manipulation,, CRC Press, (1994).

[14]

S. H. Pan and J. S. Chen, A semismooth Newton method for SOCCPs based on a one-parametric class of SOC complementarity functions,, Comp. Optim. Appl., 45 (2010), 59. doi: 10.1007/s10589-008-9166-9.

[15]

D. Prattichizzo, M. Malvezzi, M. Aggravi and T. Wimböck, Object motion-decoupled internal force control for a compliant multifingered hand,, IEEE Int. Conf. Robot. Autom., (2012), 1508.

[16]

L. Qi and J. Sun, A nonsmooth version of Newtons method,, Mathematical Programming, 58 (1993), 353. doi: 10.1007/BF01581275.

[17]

H. Scharfe, N. Hendrich and J. Zhang, Hybrid physics simulation of multi-fingered hands for dexterous in-hand manipulation,, IEEE Int. Conf. Robot. Autom., (2012), 3777.

[18]

T. Tsuji, K. Harada and K. Kaneko, Easy and fast evaluation of grasp stability by using ellipsoidal approximation of friction cone,, IEEE/RSJ Int. Conf. Intel. Robots Syst., (2009), 1830.

[19]

J. Xu and Z. Li, A kinematic model of finger gaits by multifingered hand as hybrid automaton,, IEEE Trans. Autom. Sci. Eng., 50 (2008), 467.

[1]

Yi Zhang, Yong Jiang, Liwei Zhang, Jiangzhong Zhang. A perturbation approach for an inverse linear second-order cone programming. Journal of Industrial & Management Optimization, 2013, 9 (1) : 171-189. doi: 10.3934/jimo.2013.9.171

[2]

Xiaoni Chi, Zhongping Wan, Zijun Hao. Second order sufficient conditions for a class of bilevel programs with lower level second-order cone programming problem. Journal of Industrial & Management Optimization, 2015, 11 (4) : 1111-1125. doi: 10.3934/jimo.2015.11.1111

[3]

Liwei Zhang, Jihong Zhang, Yule Zhang. Second-order optimality conditions for cone constrained multi-objective optimization. Journal of Industrial & Management Optimization, 2017, 13 (4) : 1-14. doi: 10.3934/jimo.2017089

[4]

Yanhong Yuan, Hongwei Zhang, Liwei Zhang. A smoothing Newton method for generalized Nash equilibrium problems with second-order cone constraints. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 1-18. doi: 10.3934/naco.2012.2.1

[5]

Xi-De Zhu, Li-Ping Pang, Gui-Hua Lin. Two approaches for solving mathematical programs with second-order cone complementarity constraints. Journal of Industrial & Management Optimization, 2015, 11 (3) : 951-968. doi: 10.3934/jimo.2015.11.951

[6]

Ye Tian, Shu-Cherng Fang, Zhibin Deng, Wenxun Xing. Computable representation of the cone of nonnegative quadratic forms over a general second-order cone and its application to completely positive programming. Journal of Industrial & Management Optimization, 2013, 9 (3) : 703-721. doi: 10.3934/jimo.2013.9.703

[7]

José F. Cariñena, Javier de Lucas Araujo. Superposition rules and second-order Riccati equations. Journal of Geometric Mechanics, 2011, 3 (1) : 1-22. doi: 10.3934/jgm.2011.3.1

[8]

Eugenii Shustin, Emilia Fridman, Leonid Fridman. Oscillations in a second-order discontinuous system with delay. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 339-358. doi: 10.3934/dcds.2003.9.339

[9]

Shiyun Wang, Yong-Jin Liu, Yong Jiang. A majorized penalty approach to inverse linear second order cone programming problems. Journal of Industrial & Management Optimization, 2014, 10 (3) : 965-976. doi: 10.3934/jimo.2014.10.965

[10]

Qilin Wang, Xiao-Bing Li, Guolin Yu. Second-order weak composed epiderivatives and applications to optimality conditions. Journal of Industrial & Management Optimization, 2013, 9 (2) : 455-470. doi: 10.3934/jimo.2013.9.455

[11]

W. Sarlet, G. E. Prince, M. Crampin. Generalized submersiveness of second-order ordinary differential equations. Journal of Geometric Mechanics, 2009, 1 (2) : 209-221. doi: 10.3934/jgm.2009.1.209

[12]

Shanjian Tang. A second-order maximum principle for singular optimal stochastic controls. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1581-1599. doi: 10.3934/dcdsb.2010.14.1581

[13]

José F. Cariñena, Irina Gheorghiu, Eduardo Martínez. Jacobi fields for second-order differential equations on Lie algebroids. Conference Publications, 2015, 2015 (special) : 213-222. doi: 10.3934/proc.2015.0213

[14]

Raegan Higgins. Asymptotic behavior of second-order nonlinear dynamic equations on time scales. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 609-622. doi: 10.3934/dcdsb.2010.13.609

[15]

Jaume Llibre, Amar Makhlouf. Periodic solutions of some classes of continuous second-order differential equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 477-482. doi: 10.3934/dcdsb.2017022

[16]

Jae-Hong Pyo, Jie Shen. Normal mode analysis of second-order projection methods for incompressible flows. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 817-840. doi: 10.3934/dcdsb.2005.5.817

[17]

Leonardo Colombo, David Martín de Diego. Second-order variational problems on Lie groupoids and optimal control applications. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6023-6064. doi: 10.3934/dcds.2016064

[18]

Qiong Meng, X. H. Tang. Solutions of a second-order Hamiltonian system with periodic boundary conditions. Communications on Pure & Applied Analysis, 2010, 9 (4) : 1053-1067. doi: 10.3934/cpaa.2010.9.1053

[19]

M. Euler, N. Euler, M. C. Nucci. On nonlocal symmetries generated by recursion operators: Second-order evolution equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4239-4247. doi: 10.3934/dcds.2017181

[20]

Gábor Kiss, Bernd Krauskopf. Stability implications of delay distribution for first-order and second-order systems. Discrete & Continuous Dynamical Systems - B, 2010, 13 (2) : 327-345. doi: 10.3934/dcdsb.2010.13.327

 Impact Factor: 

Metrics

  • PDF downloads (1)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]