2014, 4(1): 49-58. doi: 10.3934/naco.2014.4.49

Adjacent vertex distinguishing edge-colorings and total-colorings of the Cartesian product of graphs

1. 

College of Mathematics and Computer Science, Northwest University for Nationalities, Lanzhou 730030, China, China, China

2. 

College of Management, Northwest University for Nationalities, Lanzhou 730030, China

Received  March 2013 Revised  November 2013 Published  December 2013

Let $G$ be a simple graph with vertex set $V(G)$ and edge set $E(G)$. An edge-coloring $\sigma$ of $G$ is called an adjacent vertex distinguishing edge-coloring of $G$ if $F_{\sigma}(u)\not= F_{\sigma}(v)$ for any $uv\in E(G)$, where $F_{\sigma}(u)$ denotes the set of colors of edges incident with $u$. A total-coloring $\sigma$ of $G$ is called an adjacent vertex distinguishing total-coloring of $G$ if $S_{\sigma}(u)\not= S_{\sigma}(v)$ for any $uv\in E(G)$, where $S_{\sigma}(u)$ denotes the set of colors of edges incident with $u$ together with the color assigned to $u$. The minimum number of colors required for an adjacent vertex distinguishing edge-coloring (resp. an adjacent vertex distinguishing total-coloring) of $G$ is denoted by $\chi_a^{'}(G)$ (resp. $\chi^{''}_{a}(G)$). In this paper, we provide upper bounds for these parameters of the Cartesian product $G$ □ $H$ of two graphs $G$ and $H$. We also determine exact value of these parameters for the Cartesian product of a bipartite graph and a complete graph or a cycle, the Cartesian product of a complete graph and a cycle, the Cartesian product of two trees and the Cartesian product of regular graphs.
Citation: Shuangliang Tian, Ping Chen, Yabin Shao, Qian Wang. Adjacent vertex distinguishing edge-colorings and total-colorings of the Cartesian product of graphs. Numerical Algebra, Control & Optimization, 2014, 4 (1) : 49-58. doi: 10.3934/naco.2014.4.49
References:
[1]

S. Akbari, H. Bidkhori and N. Nosrati, r-Strong edge colorings of graphs,, Discrete Math., 306 (2006), 3005. doi: 10.1016/j.disc.2004.12.027.

[2]

P. N. Balister, E. Győri, J. Lehel and R. H. Schelp, Adjacent vertex distinguishing edge-colorings,, SIAM J. Discrete Math., 21 (2007), 237. doi: 10.1137/S0895480102414107.

[3]

J-L. Baril, H. Kheddouci and O. Togni, Adjacent vertex distinguishing edge-colorings of meshes,, Australasian Journal of Combinatorics, 35 (2006), 89.

[4]

J. A. Bondy and U. S. R. Murty, Graph Theory with Applications,, American Elsevier, (1976).

[5]

M. Chen and X. Guo, Adjacent vertex-distinguishing edge and total chromatic numbers of hypercubes,, Information Processing Letters, 109 (2009), 599. doi: 10.1016/j.ipl.2009.02.006.

[6]

K. Edwards, M. Horňák and M. Woźniak, On the neighbor-distinguishing index of a graph,, Graphs Combin., 22 (2006), 341. doi: 10.1007/s00373-006-0671-2.

[7]

H. Hatami, ∆+300 is a bound on the adjacent vertex distinguishing edge chromatic number,, J. Combin. Theory Ser. B, 95 (2005), 246. doi: 10.1016/j.jctb.2005.04.002.

[8]

S. Tian and P. Chen, On adjacent vertex-distinguishing total coloring of two classes of product graphs,, Journal of Mathematical Research and Exposition, 27 (2007), 733.

[9]

H. Wang, On the adjacent vertex-distinguishing total chromatic numbers of the graphs with ∆(G)=3,, Journal of Combinatorial Optimization, 14 (2007), 87. doi: 10.1007/s10878-006-9038-0.

[10]

H. P. Yap, Total Coloring of Graph,, Springer Verlag, (1996).

[11]

Z. Zhang, X. Chen, J. Li, B. Yao, X. Lu and J. Wang, On adjacent-vertex-distinguishing total coloring of graphs,, Science in China Series A, 48 (2005), 289. doi: 10.1360/03YS0207.

[12]

Z. Zhang, L. Liu and J. Wang, Adjacent strong edge coloring of graphs,, Applied Mathematics Letters, 15 (2002), 623. doi: 10.1016/S0893-9659(02)80015-5.

show all references

References:
[1]

S. Akbari, H. Bidkhori and N. Nosrati, r-Strong edge colorings of graphs,, Discrete Math., 306 (2006), 3005. doi: 10.1016/j.disc.2004.12.027.

[2]

P. N. Balister, E. Győri, J. Lehel and R. H. Schelp, Adjacent vertex distinguishing edge-colorings,, SIAM J. Discrete Math., 21 (2007), 237. doi: 10.1137/S0895480102414107.

[3]

J-L. Baril, H. Kheddouci and O. Togni, Adjacent vertex distinguishing edge-colorings of meshes,, Australasian Journal of Combinatorics, 35 (2006), 89.

[4]

J. A. Bondy and U. S. R. Murty, Graph Theory with Applications,, American Elsevier, (1976).

[5]

M. Chen and X. Guo, Adjacent vertex-distinguishing edge and total chromatic numbers of hypercubes,, Information Processing Letters, 109 (2009), 599. doi: 10.1016/j.ipl.2009.02.006.

[6]

K. Edwards, M. Horňák and M. Woźniak, On the neighbor-distinguishing index of a graph,, Graphs Combin., 22 (2006), 341. doi: 10.1007/s00373-006-0671-2.

[7]

H. Hatami, ∆+300 is a bound on the adjacent vertex distinguishing edge chromatic number,, J. Combin. Theory Ser. B, 95 (2005), 246. doi: 10.1016/j.jctb.2005.04.002.

[8]

S. Tian and P. Chen, On adjacent vertex-distinguishing total coloring of two classes of product graphs,, Journal of Mathematical Research and Exposition, 27 (2007), 733.

[9]

H. Wang, On the adjacent vertex-distinguishing total chromatic numbers of the graphs with ∆(G)=3,, Journal of Combinatorial Optimization, 14 (2007), 87. doi: 10.1007/s10878-006-9038-0.

[10]

H. P. Yap, Total Coloring of Graph,, Springer Verlag, (1996).

[11]

Z. Zhang, X. Chen, J. Li, B. Yao, X. Lu and J. Wang, On adjacent-vertex-distinguishing total coloring of graphs,, Science in China Series A, 48 (2005), 289. doi: 10.1360/03YS0207.

[12]

Z. Zhang, L. Liu and J. Wang, Adjacent strong edge coloring of graphs,, Applied Mathematics Letters, 15 (2002), 623. doi: 10.1016/S0893-9659(02)80015-5.

[1]

Lasse Kliemann, Elmira Shirazi Sheykhdarabadi, Anand Srivastav. Price of anarchy for graph coloring games with concave payoff. Journal of Dynamics & Games, 2017, 4 (1) : 41-58. doi: 10.3934/jdg.2017003

[2]

Klaus-Jochen Engel, Marjeta Kramar Fijavž, Rainer Nagel, Eszter Sikolya. Vertex control of flows in networks. Networks & Heterogeneous Media, 2008, 3 (4) : 709-722. doi: 10.3934/nhm.2008.3.709

[3]

Monika Muszkieta. A variational approach to edge detection. Inverse Problems & Imaging, 2016, 10 (2) : 499-517. doi: 10.3934/ipi.2016009

[4]

Kengo Matsumoto. On the Markov-Dyck shifts of vertex type. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 403-422. doi: 10.3934/dcds.2016.36.403

[5]

Chris Bernhardt. Vertex maps for trees: Algebra and periods of periodic orbits. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 399-408. doi: 10.3934/dcds.2006.14.399

[6]

Robert L. Griess Jr., Ching Hung Lam. Groups of Lie type, vertex algebras, and modular moonshine. Electronic Research Announcements, 2014, 21: 167-176. doi: 10.3934/era.2014.21.167

[7]

Liming Zhang, Tao Qian, Qingye Zeng. Edge detection by using rotational wavelets. Communications on Pure & Applied Analysis, 2007, 6 (3) : 899-915. doi: 10.3934/cpaa.2007.6.899

[8]

David Henry, Octavian G. Mustafa. Existence of solutions for a class of edge wave equations. Discrete & Continuous Dynamical Systems - B, 2006, 6 (5) : 1113-1119. doi: 10.3934/dcdsb.2006.6.1113

[9]

Heinz-Jürgen Flad, Gohar Harutyunyan. Ellipticity of quantum mechanical Hamiltonians in the edge algebra. Conference Publications, 2011, 2011 (Special) : 420-429. doi: 10.3934/proc.2011.2011.420

[10]

Yuying Shi, Ying Gu, Li-Lian Wang, Xue-Cheng Tai. A fast edge detection algorithm using binary labels. Inverse Problems & Imaging, 2015, 9 (2) : 551-578. doi: 10.3934/ipi.2015.9.551

[11]

Moussa Doumbia, Abdul-Aziz Yakubu. Malaria incidence and anopheles mosquito density in irrigated and adjacent non-irrigated villages of Niono in Mali. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 841-857. doi: 10.3934/dcdsb.2017042

[12]

Qilin Wang, Shengji Li, Kok Lay Teo. Continuity of second-order adjacent derivatives for weak perturbation maps in vector optimization. Numerical Algebra, Control & Optimization, 2011, 1 (3) : 417-433. doi: 10.3934/naco.2011.1.417

[13]

Xiaoqun Zhang, Tony F. Chan. Wavelet inpainting by nonlocal total variation. Inverse Problems & Imaging, 2010, 4 (1) : 191-210. doi: 10.3934/ipi.2010.4.191

[14]

Zehui Shao, Huiqin Jiang, Aleksander Vesel. L(2, 1)-labeling of the Cartesian and strong product of two directed cycles. Mathematical Foundations of Computing, 2018, 1 (1) : 49-61. doi: 10.3934/mfc.2018003

[15]

Sergey V. Dmitriev, Asiya A. Nazarova, Anatoliy I. Pshenichnyuk, Albert M. Iskandarov. Dynamics of edge dislocation clusters interacting with running acoustic waves. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1079-1094. doi: 10.3934/dcdss.2011.4.1079

[16]

Angel Angelov, Marcus Wagner. Multimodal image registration by elastic matching of edge sketches via optimal control. Journal of Industrial & Management Optimization, 2014, 10 (2) : 567-590. doi: 10.3934/jimo.2014.10.567

[17]

Delia Ionescu-Kruse. Short-wavelength instabilities of edge waves in stratified water. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2053-2066. doi: 10.3934/dcds.2015.35.2053

[18]

Robert Stephen Cantrell, Chris Cosner, William F. Fagan. Edge-linked dynamics and the scale-dependence of competitive. Mathematical Biosciences & Engineering, 2005, 2 (4) : 833-868. doi: 10.3934/mbe.2005.2.833

[19]

Raz Kupferman, Cy Maor. The emergence of torsion in the continuum limit of distributed edge-dislocations. Journal of Geometric Mechanics, 2015, 7 (3) : 361-387. doi: 10.3934/jgm.2015.7.361

[20]

Chia-Chun Hsu, Hsun-Jung Cho, Shu-Cherng Fang. Solving routing and wavelength assignment problem with maximum edge-disjoint paths. Journal of Industrial & Management Optimization, 2017, 13 (2) : 1065-1084. doi: 10.3934/jimo.2016062

 Impact Factor: 

Metrics

  • PDF downloads (1)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]