• Previous Article
    Homogenization of high-contrast and non symmetric conductivities for non periodic columnar structures
  • NHM Home
  • This Issue
  • Next Article
    Convergence of vanishing capillarity approximations for scalar conservation laws with discontinuous fluxes
2013, 8(4): 943-968. doi: 10.3934/nhm.2013.8.943

Global existence and asymptotic behavior of measure valued solutions to the kinetic Kuramoto--Daido model with inertia

1. 

Department of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom

2. 

Department of Mathematical Sciences and Research Institute of Mathematics, Seoul National University, Seoul 151-747

3. 

Department of Mathematical Sciences, Seoul National University, Seoul 151-747, South Korea

Received  December 2012 Revised  June 2013 Published  November 2013

We present the global existence and long-time behavior of measure-valued solutions to the kinetic Kuramoto--Daido model with inertia. For the global existence of measure-valued solutions, we employ a Neunzert's mean-field approach for the Vlasov equation to construct approximate solutions. The approximate solutions are empirical measures generated by the solution to the Kuramoto--Daido model with inertia, and we also provide an a priori local-in-time stability estimate for measure-valued solutions in terms of a bounded Lipschitz distance. For the asymptotic frequency synchronization, we adopt two frameworks depending on the relative strength of inertia and show that the diameter of the projected frequency support of the measure-valued solutions exponentially converge to zero.
Citation: Young-Pil Choi, Seung-Yeal Ha, Seok-Bae Yun. Global existence and asymptotic behavior of measure valued solutions to the kinetic Kuramoto--Daido model with inertia. Networks & Heterogeneous Media, 2013, 8 (4) : 943-968. doi: 10.3934/nhm.2013.8.943
References:
[1]

J. A. Acebron, L. L. Bonilla, C. J. Perez Vicente, F. Ritort and R. Spigler, The Kuramoto model: A simple paradigm for synchronization phenomena,, Rev. Mod. Phys., 77 (2005), 137. doi: 10.1103/RevModPhys.77.137.

[2]

J. A. Acebron, L. L. Bonilla and R. Spigler, Synchronization in populations of globally coupled oscillators with inertial effect,, Phys. Rev. E., 62 (2000), 3437. doi: 10.1103/PhysRevE.62.3437.

[3]

J. A. Acebron and R. Spigler, Adaptive frequency model for phase-frequency synchronization in large populations of globally coupled nonlinear oscillators,, Phys. Rev. Lett., 81 (1998), 2229. doi: 10.1103/PhysRevLett.81.2229.

[4]

J. Buck and E. Buck, Biology of synchronous flashing of fireflies,, Nature, 211 (1966), 562. doi: 10.1038/211562a0.

[5]

N. J. Balmforth and R. Sassi, A shocking display of synchrony,, Physica D., 143 (2000), 21. doi: 10.1016/S0167-2789(00)00095-6.

[6]

J. A. Carrillo, Y.-P. Choi, S.-Y. Ha, M.-J. Kang and Y. Kim, Contractivity of the Wasserstein metric for the kinetic Kuramoto equation,, preprint, ().

[7]

H. Chiba, Continuous limit of the moments system for the globally coupled phase oscillator,, Discrete Contin. Dyn. Syst., 33 (2013), 1891. doi: 10.3934/dcds.2013.33.1891.

[8]

Y.-P. Choi, S.-Y. Ha and S. E. Noh, Remarks on the nonlinear stability of the Kuramoto model with inertia,, to appear in Quart. Appl. Math., ().

[9]

Y.-P. Choi, S.-Y. Ha, S. Jung and Y. Kim, Asymptotic formation and orbital stability of phase-locked states for the Kuramoto model,, Physica D., 241 (2012), 735. doi: 10.1016/j.physd.2011.11.011.

[10]

Y.-P. Choi, S.-Y. Ha and S.-B. Yun, Complete synchronization of Kuramoto oscillators with finite inertia,, Physica D., 240 (2011), 32. doi: 10.1016/j.physd.2010.08.004.

[11]

N. Chopra and M. W. Spong, On exponential synchronization of Kuramoto oscillators,, IEEE Trans. Autom. Control., 54 (2009), 353. doi: 10.1109/TAC.2008.2007884.

[12]

J. D. Crawford and K. T. R. Davies, Synchronization of globally coupled phase oscillators: Singularities and scaling for general couplings,, Physica D., 125 (1999), 1. doi: 10.1016/S0167-2789(98)00235-8.

[13]

H. Daido, Onset of cooperative entrainment in limit-cycle oscillators with uniform all-to-all interactions: Bifurcation of the order function,, Physica D., 91 (1996), 24. doi: 10.1016/0167-2789(95)00260-X.

[14]

B. C. Daniels, S. T. Dissanayake and B. R. Trees, Synchronization of coupled rotators: Josephson junction ladders and the locally coupled Kuramoto model,, Phys. Rev. E., 67 (2003). doi: 10.1103/PhysRevE.67.026216.

[15]

F. Dorfler and F. Bullo, On the critical coupling for Kuramoto oscillators,, SIAM J. Appl. Dyn. Syst., 10 (2011), 1070. doi: 10.1137/10081530X.

[16]

G. B. Ermentrout, Synchronization in a pool of mutually coupled oscillators with random frequencies,, J. Math. Biol., 22 (1985), 1. doi: 10.1007/BF00276542.

[17]

S.-Y. Ha, T. Y. Ha and J.-H. Kim, On the complete synchronization for the Kuramoto model,, Physica D., 239 (2010), 1692. doi: 10.1016/j.physd.2010.05.003.

[18]

S.-Y. Ha and J.-G. Liu, A simple proof of the Cucker-Smale flocking dynamics and mean-field limit,, Commun. Math. Sci., 7 (2009), 297. doi: 10.4310/CMS.2009.v7.n2.a2.

[19]

H. Hong, M. Y. Choi, J. Yi and K.-S. Soh, Inertia effects on periodic synchronization in a system of coupled oscillators,, Phys. Rev. E., 59 (1999), 353. doi: 10.1103/PhysRevE.59.353.

[20]

H. Hong, G. S. Jeon and M. Y. Choi, Spontaneous phase oscillation induced by inertia and time delay,, Phys. Rev. E., 65 (2002). doi: 10.1103/PhysRevE.65.026208.

[21]

Y. Kuramoto, Chemical Oscillations, Waves and Turbulence,, Springer-Verlag, (1984). doi: 10.1007/978-3-642-69689-3.

[22]

Y. Kuramoto, International symposium on mathematical problems in mathematical physics,, Lecture Notes in Theoretical Physics., 39 (1975), 420.

[23]

C. Lancellotti, On the Vlasov limit for systems of nonlinearly coupled oscillators without noise,, Transp. Theory Stat. Phys., 34 (2005), 523. doi: 10.1080/00411450508951152.

[24]

M. M. Lavrentiev and R. Spigler, Existence and uniqueness of solutions to the Kuramoto-Sakaguchi nonliner parabolic integrodifferential equation,, Differ. Integr. Eq., 13 (2000), 649.

[25]

H. Neunzert, An introduction to the nonlinear Boltzmann-Vlasov equation,, In Kinetic Theories and the Boltzmann Equation, (1048). doi: 10.1007/BFb0071878.

[26]

A. Pikovsky, M. Rosenblum and J. Kurths, Synchrnization: A Universal Concept in Nonlinear Sciences,, Cambridge University Press, (2001). doi: 10.1017/CBO9780511755743.

[27]

P.-A. Raviart, An analysis of particle methods,, in Numerical Methods in Fluid Dynamics (Como, 1127 (1983), 243. doi: 10.1007/BFb0074532.

[28]

H. Sakaguchi and Y. Kuramoto, A soluble active rotator model showing phase transitions via mutual entraintment,, Prog. Theor. Phys., 76 (1986), 576. doi: 10.1143/PTP.76.576.

[29]

H. Sphohn, Large Scale Dynamics of Interacting Particles,, Springer-Verlag, (1991). doi: 10.1007/978-3-642-84371-6.

[30]

S. H. Strogatz, From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators,, Physica D., 143 (2000), 1. doi: 10.1016/S0167-2789(00)00094-4.

[31]

H. A. Tanaka, A. J. Lichtenberg and S. Oishi, First order phase transition resulting from finite inertia in coupled oscillator systems,, Phys. Rev. Lett., 78 (1997), 2104. doi: 10.1103/PhysRevLett.78.2104.

[32]

H. A. Tanaka, A. J. Lichtenberg and S. Oishi, Self-synchronization of coupled oscillators with hysteretic responses,, Physica D., 100 (1997), 279. doi: 10.1016/S0167-2789(96)00193-5.

[33]

S. Watanabe and J. W. Swift, Stability of periodic solutions in series arrays of Josephson junctions with internal capacitance,, J. Nonlinear Sci., 7 (1997), 503. doi: 10.1007/s003329900038.

[34]

S. Watanabe and S. H. Strogatz, Constants of motion for superconducting Josephson arrays,, Physica D., 74 (1994), 197. doi: 10.1016/0167-2789(94)90196-1.

[35]

K. Wiesenfeld, R. Colet and S. H. Strogatz, Synchronization transitions in a disordered Josephson series arrays,, Phys. Rev. Lett., 76 (1996), 404. doi: 10.1103/PhysRevLett.76.404.

[36]

K. Wiesenfeld, R. Colet and S. H. Strogatz, Frequency locking in Josephson arrays: Connection with the Kuramoto model,, Phys. Rev. E., 57 (1988), 1563. doi: 10.1103/PhysRevE.57.1563.

[37]

K. Wiesenfeld and J. W. Swift, Averaged equations for Josephson junction series arrays,, Phys. Rev. E., 51 (1995), 1020. doi: 10.1103/PhysRevE.51.1020.

[38]

A. T. Winfree, Biological rhythms and the behavior of populations of coupled oscillators,, J. Theor. Biol., 16 (1967), 15. doi: 10.1016/0022-5193(67)90051-3.

show all references

References:
[1]

J. A. Acebron, L. L. Bonilla, C. J. Perez Vicente, F. Ritort and R. Spigler, The Kuramoto model: A simple paradigm for synchronization phenomena,, Rev. Mod. Phys., 77 (2005), 137. doi: 10.1103/RevModPhys.77.137.

[2]

J. A. Acebron, L. L. Bonilla and R. Spigler, Synchronization in populations of globally coupled oscillators with inertial effect,, Phys. Rev. E., 62 (2000), 3437. doi: 10.1103/PhysRevE.62.3437.

[3]

J. A. Acebron and R. Spigler, Adaptive frequency model for phase-frequency synchronization in large populations of globally coupled nonlinear oscillators,, Phys. Rev. Lett., 81 (1998), 2229. doi: 10.1103/PhysRevLett.81.2229.

[4]

J. Buck and E. Buck, Biology of synchronous flashing of fireflies,, Nature, 211 (1966), 562. doi: 10.1038/211562a0.

[5]

N. J. Balmforth and R. Sassi, A shocking display of synchrony,, Physica D., 143 (2000), 21. doi: 10.1016/S0167-2789(00)00095-6.

[6]

J. A. Carrillo, Y.-P. Choi, S.-Y. Ha, M.-J. Kang and Y. Kim, Contractivity of the Wasserstein metric for the kinetic Kuramoto equation,, preprint, ().

[7]

H. Chiba, Continuous limit of the moments system for the globally coupled phase oscillator,, Discrete Contin. Dyn. Syst., 33 (2013), 1891. doi: 10.3934/dcds.2013.33.1891.

[8]

Y.-P. Choi, S.-Y. Ha and S. E. Noh, Remarks on the nonlinear stability of the Kuramoto model with inertia,, to appear in Quart. Appl. Math., ().

[9]

Y.-P. Choi, S.-Y. Ha, S. Jung and Y. Kim, Asymptotic formation and orbital stability of phase-locked states for the Kuramoto model,, Physica D., 241 (2012), 735. doi: 10.1016/j.physd.2011.11.011.

[10]

Y.-P. Choi, S.-Y. Ha and S.-B. Yun, Complete synchronization of Kuramoto oscillators with finite inertia,, Physica D., 240 (2011), 32. doi: 10.1016/j.physd.2010.08.004.

[11]

N. Chopra and M. W. Spong, On exponential synchronization of Kuramoto oscillators,, IEEE Trans. Autom. Control., 54 (2009), 353. doi: 10.1109/TAC.2008.2007884.

[12]

J. D. Crawford and K. T. R. Davies, Synchronization of globally coupled phase oscillators: Singularities and scaling for general couplings,, Physica D., 125 (1999), 1. doi: 10.1016/S0167-2789(98)00235-8.

[13]

H. Daido, Onset of cooperative entrainment in limit-cycle oscillators with uniform all-to-all interactions: Bifurcation of the order function,, Physica D., 91 (1996), 24. doi: 10.1016/0167-2789(95)00260-X.

[14]

B. C. Daniels, S. T. Dissanayake and B. R. Trees, Synchronization of coupled rotators: Josephson junction ladders and the locally coupled Kuramoto model,, Phys. Rev. E., 67 (2003). doi: 10.1103/PhysRevE.67.026216.

[15]

F. Dorfler and F. Bullo, On the critical coupling for Kuramoto oscillators,, SIAM J. Appl. Dyn. Syst., 10 (2011), 1070. doi: 10.1137/10081530X.

[16]

G. B. Ermentrout, Synchronization in a pool of mutually coupled oscillators with random frequencies,, J. Math. Biol., 22 (1985), 1. doi: 10.1007/BF00276542.

[17]

S.-Y. Ha, T. Y. Ha and J.-H. Kim, On the complete synchronization for the Kuramoto model,, Physica D., 239 (2010), 1692. doi: 10.1016/j.physd.2010.05.003.

[18]

S.-Y. Ha and J.-G. Liu, A simple proof of the Cucker-Smale flocking dynamics and mean-field limit,, Commun. Math. Sci., 7 (2009), 297. doi: 10.4310/CMS.2009.v7.n2.a2.

[19]

H. Hong, M. Y. Choi, J. Yi and K.-S. Soh, Inertia effects on periodic synchronization in a system of coupled oscillators,, Phys. Rev. E., 59 (1999), 353. doi: 10.1103/PhysRevE.59.353.

[20]

H. Hong, G. S. Jeon and M. Y. Choi, Spontaneous phase oscillation induced by inertia and time delay,, Phys. Rev. E., 65 (2002). doi: 10.1103/PhysRevE.65.026208.

[21]

Y. Kuramoto, Chemical Oscillations, Waves and Turbulence,, Springer-Verlag, (1984). doi: 10.1007/978-3-642-69689-3.

[22]

Y. Kuramoto, International symposium on mathematical problems in mathematical physics,, Lecture Notes in Theoretical Physics., 39 (1975), 420.

[23]

C. Lancellotti, On the Vlasov limit for systems of nonlinearly coupled oscillators without noise,, Transp. Theory Stat. Phys., 34 (2005), 523. doi: 10.1080/00411450508951152.

[24]

M. M. Lavrentiev and R. Spigler, Existence and uniqueness of solutions to the Kuramoto-Sakaguchi nonliner parabolic integrodifferential equation,, Differ. Integr. Eq., 13 (2000), 649.

[25]

H. Neunzert, An introduction to the nonlinear Boltzmann-Vlasov equation,, In Kinetic Theories and the Boltzmann Equation, (1048). doi: 10.1007/BFb0071878.

[26]

A. Pikovsky, M. Rosenblum and J. Kurths, Synchrnization: A Universal Concept in Nonlinear Sciences,, Cambridge University Press, (2001). doi: 10.1017/CBO9780511755743.

[27]

P.-A. Raviart, An analysis of particle methods,, in Numerical Methods in Fluid Dynamics (Como, 1127 (1983), 243. doi: 10.1007/BFb0074532.

[28]

H. Sakaguchi and Y. Kuramoto, A soluble active rotator model showing phase transitions via mutual entraintment,, Prog. Theor. Phys., 76 (1986), 576. doi: 10.1143/PTP.76.576.

[29]

H. Sphohn, Large Scale Dynamics of Interacting Particles,, Springer-Verlag, (1991). doi: 10.1007/978-3-642-84371-6.

[30]

S. H. Strogatz, From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators,, Physica D., 143 (2000), 1. doi: 10.1016/S0167-2789(00)00094-4.

[31]

H. A. Tanaka, A. J. Lichtenberg and S. Oishi, First order phase transition resulting from finite inertia in coupled oscillator systems,, Phys. Rev. Lett., 78 (1997), 2104. doi: 10.1103/PhysRevLett.78.2104.

[32]

H. A. Tanaka, A. J. Lichtenberg and S. Oishi, Self-synchronization of coupled oscillators with hysteretic responses,, Physica D., 100 (1997), 279. doi: 10.1016/S0167-2789(96)00193-5.

[33]

S. Watanabe and J. W. Swift, Stability of periodic solutions in series arrays of Josephson junctions with internal capacitance,, J. Nonlinear Sci., 7 (1997), 503. doi: 10.1007/s003329900038.

[34]

S. Watanabe and S. H. Strogatz, Constants of motion for superconducting Josephson arrays,, Physica D., 74 (1994), 197. doi: 10.1016/0167-2789(94)90196-1.

[35]

K. Wiesenfeld, R. Colet and S. H. Strogatz, Synchronization transitions in a disordered Josephson series arrays,, Phys. Rev. Lett., 76 (1996), 404. doi: 10.1103/PhysRevLett.76.404.

[36]

K. Wiesenfeld, R. Colet and S. H. Strogatz, Frequency locking in Josephson arrays: Connection with the Kuramoto model,, Phys. Rev. E., 57 (1988), 1563. doi: 10.1103/PhysRevE.57.1563.

[37]

K. Wiesenfeld and J. W. Swift, Averaged equations for Josephson junction series arrays,, Phys. Rev. E., 51 (1995), 1020. doi: 10.1103/PhysRevE.51.1020.

[38]

A. T. Winfree, Biological rhythms and the behavior of populations of coupled oscillators,, J. Theor. Biol., 16 (1967), 15. doi: 10.1016/0022-5193(67)90051-3.

[1]

Ammari Zied, Liard Quentin. On uniqueness of measure-valued solutions to Liouville's equation of Hamiltonian PDEs. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 723-748. doi: 10.3934/dcds.2018032

[2]

Peng Jiang. Global well-posedness and large time behavior of classical solutions to the diffusion approximation model in radiation hydrodynamics. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 2045-2063. doi: 10.3934/dcds.2017087

[3]

Seung-Yeal Ha, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. Uniform stability and mean-field limit for the augmented Kuramoto model. Networks & Heterogeneous Media, 2018, 13 (2) : 297-322. doi: 10.3934/nhm.2018013

[4]

Goro Akagi, Kei Matsuura. Well-posedness and large-time behaviors of solutions for a parabolic equation involving $p(x)$-Laplacian. Conference Publications, 2011, 2011 (Special) : 22-31. doi: 10.3934/proc.2011.2011.22

[5]

Didier Pilod. Sharp well-posedness results for the Kuramoto-Velarde equation. Communications on Pure & Applied Analysis, 2008, 7 (4) : 867-881. doi: 10.3934/cpaa.2008.7.867

[6]

Azmy S. Ackleh, Vinodh K. Chellamuthu, Kazufumi Ito. Finite difference approximations for measure-valued solutions of a hierarchically size-structured population model. Mathematical Biosciences & Engineering, 2015, 12 (2) : 233-258. doi: 10.3934/mbe.2015.12.233

[7]

Haydi Israel. Well-posedness and long time behavior of an Allen-Cahn type equation. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2811-2827. doi: 10.3934/cpaa.2013.12.2811

[8]

Andrea Giorgini. On the Swift-Hohenberg equation with slow and fast dynamics: well-posedness and long-time behavior. Communications on Pure & Applied Analysis, 2016, 15 (1) : 219-241. doi: 10.3934/cpaa.2016.15.219

[9]

Patrick Gerard, Christophe Pallard. A mean-field toy model for resonant transport. Kinetic & Related Models, 2010, 3 (2) : 299-309. doi: 10.3934/krm.2010.3.299

[10]

Rainer Brunnhuber, Barbara Kaltenbacher. Well-posedness and asymptotic behavior of solutions for the Blackstock-Crighton-Westervelt equation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4515-4535. doi: 10.3934/dcds.2014.34.4515

[11]

Kazuo Yamazaki, Xueying Wang. Global well-posedness and asymptotic behavior of solutions to a reaction-convection-diffusion cholera epidemic model. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1297-1316. doi: 10.3934/dcdsb.2016.21.1297

[12]

Rong Yang, Li Chen. Mean-field limit for a collision-avoiding flocking system and the time-asymptotic flocking dynamics for the kinetic equation. Kinetic & Related Models, 2014, 7 (2) : 381-400. doi: 10.3934/krm.2014.7.381

[13]

Michele Colturato. Well-posedness and longtime behavior for a singular phase field system with perturbed phase dynamics. Evolution Equations & Control Theory, 2018, 7 (2) : 217-245. doi: 10.3934/eect.2018011

[14]

Jiawei Chen, Zhongping Wan, Liuyang Yuan. Existence of solutions and $\alpha$-well-posedness for a system of constrained set-valued variational inequalities. Numerical Algebra, Control & Optimization, 2013, 3 (3) : 567-581. doi: 10.3934/naco.2013.3.567

[15]

Jinkai Li, Edriss Titi. Global well-posedness of strong solutions to a tropical climate model. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4495-4516. doi: 10.3934/dcds.2016.36.4495

[16]

Shijin Deng. Large time behavior for the IBVP of the 3-D Nishida's model. Networks & Heterogeneous Media, 2010, 5 (1) : 133-142. doi: 10.3934/nhm.2010.5.133

[17]

Igor Chueshov, Irena Lasiecka, Justin Webster. Flow-plate interactions: Well-posedness and long-time behavior. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : 925-965. doi: 10.3934/dcdss.2014.7.925

[18]

Giulio Schimperna, Antonio Segatti, Ulisse Stefanelli. Well-posedness and long-time behavior for a class of doubly nonlinear equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 15-38. doi: 10.3934/dcds.2007.18.15

[19]

Philip Trautmann, Boris Vexler, Alexander Zlotnik. Finite element error analysis for measure-valued optimal control problems governed by a 1D wave equation with variable coefficients. Mathematical Control & Related Fields, 2018, 8 (2) : 411-449. doi: 10.3934/mcrf.2018017

[20]

Stefan Meyer, Mathias Wilke. Global well-posedness and exponential stability for Kuznetsov's equation in $L_p$-spaces. Evolution Equations & Control Theory, 2013, 2 (2) : 365-378. doi: 10.3934/eect.2013.2.365

2016 Impact Factor: 1.2

Metrics

  • PDF downloads (1)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]