2014, 10(2): 567-590. doi: 10.3934/jimo.2014.10.567

Multimodal image registration by elastic matching of edge sketches via optimal control

1. 

Otto-Hahn-Str. 15, D-30880 Laatzen, Germany

2. 

University of Leipzig, Department of Mathematics, P. O. B. 10 09 20, D-04009 Leipzig

Received  December 2012 Revised  August 2013 Published  October 2013

For the problem of multimodal image registration, an optimal control approach is presented. The geometrical information of the images will be transformed into weighted edge sketches, for which a linear-elastic or hyperelastic registration will be performed. For the numerical solution of this problem, we provide a direct method based on discretization methods and large-scale optimization techniques. A comparison of a separated and a joint access for the generation of the edge sketches and the determination of the matching deformation is made. The quality of the results obtained with the optimal control method competes well with those generated by a standard variational method.
Citation: Angel Angelov, Marcus Wagner. Multimodal image registration by elastic matching of edge sketches via optimal control. Journal of Industrial & Management Optimization, 2014, 10 (2) : 567-590. doi: 10.3934/jimo.2014.10.567
References:
[1]

A. Angelov, Multimodale Bildregistrierung durch elastisches Matching von Kantenskizzen,, Diploma thesis, (2011).

[2]

B. Bourdin, Image segmentation with a finite element method,, M2AN Mathematical Modelling and Numerical Analysis, 33 (1999), 229. doi: 10.1051/m2an:1999114.

[3]

C. Brune, H. Maurer and M. Wagner, Detection of intensity and motion edges within optical flow via multidimensional control,, SIAM J. Imaging Sci., 2 (2009), 1190. doi: 10.1137/080725064.

[4]

M. Burger, J. Modersitzki and L. Ruthotto, A hyperelastic regularization energy for image registration,, SIAM J. Sci. Comput., 35 (2013). doi: 10.1137/110835955.

[5]

C. Clason, B. Jin and K. Kunisch, A semismooth Newton method for $L^1$ data fitting with automatic choice of regularization parameters and noise calibration,, SIAM J. Imaging Sci., 3 (2010), 199. doi: 10.1137/090758003.

[6]

B. Dacorogna, Direct Methods in the Calculus of Variations,, Second edition, (2008).

[7]

M. Droske and M. Rumpf, A variational approach to nonrigid morphological image registration,, SIAM J. Appl. Math., 64 (2004), 668. doi: 10.1137/S0036139902419528.

[8]

M. Droske and M. Rumpf, Multiscale joint segmentation and registration of image morphology,, IEEE Trans. Pattern Recognition Machine Intelligence, 29 (2007), 2181.

[9]

L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions,, Studies in Advanced Mathematics, (1992).

[10]

B. Fischer and J. Modersitzki, Curvature based image registration,, J. Math. Imaging Vision, 18 (2003), 81. doi: 10.1023/A:1021897212261.

[11]

R. Fourer, D. M. Gay and B. W. Kernighan, AMPL. A Modeling Language for Mathematical Programming,, Second edition, (2003).

[12]

L. Franek, M. Franek, H. Maurer and M. Wagner, A discretization method for the numerical solution of Dieudonné-Rashevsky type problems with application to edge detection within noisy image data,, Opt. Control Appl. Meth., 33 (2012), 276. doi: 10.1002/oca.996.

[13]

L. A. Gallardo and M. A. Meju, Characterization of heterogeneous near-surface materials by joint 2D inversion of dc resistivity and seismic data,, Geophysical Research Letters, 30 (2003). doi: 10.1029/2003GL017370.

[14]

H. Goering, H.-G. Roos and L. Tobiska, Finite-Element-Methode,, Third edition, (1993).

[15]

E. Haber and J. Modersitzki, Intensity gradient based registration and fusion of multi-modal images,, Methods of Information in Medicine, 46 (2007), 292.

[16]

J. Han, B. Berkels, M. Rumpf, J. Hornegger, M. Droske, M. Fried, J. Scorzin and C. Schaller, A variational framework for joint image registration, denoising and edge detection,, in Bildverarbeitung für die Medizin 2006 (eds. H. Handels, (2006), 246.

[17]

S. Henn and K. Witsch, Iterative multigrid regularization techniques for image matching,, SIAM J. Sci. Comput., 23 (2001), 1077.

[18]

G. Hermosillo, C. Chefd'hotel and O. Faugeras, Variational methods for multimodal image matching,, Int. J. Computer Vision, 50 (2002), 329.

[19]

M. Hintermüller and S. L. Keeling, Image registration and segmentation based on energy minimization,, in Handbook of Optimization in Medicine (eds. P. M. Pardalos and H. E. Romeijn) Springer, (2009), 213.

[20]

B. Jansen, Interior Point Techniques in Optimization,, Kluwer, (1997).

[21]

C. Laird and A. Wächter, Introduction to IPOPT: A Tutorial for Downloading, Installing, and Using IPOPT,, Revision No. 1830. Available from: , (1830).

[22]

J. Min, M. Powell and K. W. Bowyer, Automated performance evaluation of range image segmentation algorithms,, IEEE Trans. Systems, 34 (2004), 263.

[23]

J. Modersitzki, Numerical Methods for Image Registration,, Oxford University Press, (2004).

[24]

J. Modersitzki, FAIR. Flexible Algorithms for Image Registration,, SIAM, (2009).

[25]

R. W. Ogden, Nonlinear elasticity, anisotropy, material stability and residual stresses in soft tissue,, in Biomechanics of Soft Tissue in Cardiovascular Systems (eds. G. A. Holzapfel and R. W. Ogden), (2003), 65.

[26]

K. N. Plataniotis and A. N. Venetsanopoulos, Color Image Processing and Applications,, Springer, (2000).

[27]

H. Richter, Wahrscheinlichkeitstheorie,, Second edition, (1966).

[28]

O. Scherzer, M. Grasmair, H. Grossauer, M. Haltmeier and F. Lenzen, Variational Methods in Imaging,, Springer, (2009).

[29]

A. Wächter and L. T. Biegler, On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming,, Math. Program. Ser. A, 106 (2006), 25.

[30]

M. Wagner, Elastic image registration in presence of polyconvex constraints,, Karl-Franzens-Universität Graz, (2010), 2010.

[31]

M. Wagner, A direct method for the solution of an optimal control problem arising from image registration,, Numerical Algebra, 2 (2012), 487.

[32]

B. Zitová and J. Flusser, Image registration methods: A survey,, Image and Vision Computing, 21 (2003), 977.

show all references

References:
[1]

A. Angelov, Multimodale Bildregistrierung durch elastisches Matching von Kantenskizzen,, Diploma thesis, (2011).

[2]

B. Bourdin, Image segmentation with a finite element method,, M2AN Mathematical Modelling and Numerical Analysis, 33 (1999), 229. doi: 10.1051/m2an:1999114.

[3]

C. Brune, H. Maurer and M. Wagner, Detection of intensity and motion edges within optical flow via multidimensional control,, SIAM J. Imaging Sci., 2 (2009), 1190. doi: 10.1137/080725064.

[4]

M. Burger, J. Modersitzki and L. Ruthotto, A hyperelastic regularization energy for image registration,, SIAM J. Sci. Comput., 35 (2013). doi: 10.1137/110835955.

[5]

C. Clason, B. Jin and K. Kunisch, A semismooth Newton method for $L^1$ data fitting with automatic choice of regularization parameters and noise calibration,, SIAM J. Imaging Sci., 3 (2010), 199. doi: 10.1137/090758003.

[6]

B. Dacorogna, Direct Methods in the Calculus of Variations,, Second edition, (2008).

[7]

M. Droske and M. Rumpf, A variational approach to nonrigid morphological image registration,, SIAM J. Appl. Math., 64 (2004), 668. doi: 10.1137/S0036139902419528.

[8]

M. Droske and M. Rumpf, Multiscale joint segmentation and registration of image morphology,, IEEE Trans. Pattern Recognition Machine Intelligence, 29 (2007), 2181.

[9]

L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions,, Studies in Advanced Mathematics, (1992).

[10]

B. Fischer and J. Modersitzki, Curvature based image registration,, J. Math. Imaging Vision, 18 (2003), 81. doi: 10.1023/A:1021897212261.

[11]

R. Fourer, D. M. Gay and B. W. Kernighan, AMPL. A Modeling Language for Mathematical Programming,, Second edition, (2003).

[12]

L. Franek, M. Franek, H. Maurer and M. Wagner, A discretization method for the numerical solution of Dieudonné-Rashevsky type problems with application to edge detection within noisy image data,, Opt. Control Appl. Meth., 33 (2012), 276. doi: 10.1002/oca.996.

[13]

L. A. Gallardo and M. A. Meju, Characterization of heterogeneous near-surface materials by joint 2D inversion of dc resistivity and seismic data,, Geophysical Research Letters, 30 (2003). doi: 10.1029/2003GL017370.

[14]

H. Goering, H.-G. Roos and L. Tobiska, Finite-Element-Methode,, Third edition, (1993).

[15]

E. Haber and J. Modersitzki, Intensity gradient based registration and fusion of multi-modal images,, Methods of Information in Medicine, 46 (2007), 292.

[16]

J. Han, B. Berkels, M. Rumpf, J. Hornegger, M. Droske, M. Fried, J. Scorzin and C. Schaller, A variational framework for joint image registration, denoising and edge detection,, in Bildverarbeitung für die Medizin 2006 (eds. H. Handels, (2006), 246.

[17]

S. Henn and K. Witsch, Iterative multigrid regularization techniques for image matching,, SIAM J. Sci. Comput., 23 (2001), 1077.

[18]

G. Hermosillo, C. Chefd'hotel and O. Faugeras, Variational methods for multimodal image matching,, Int. J. Computer Vision, 50 (2002), 329.

[19]

M. Hintermüller and S. L. Keeling, Image registration and segmentation based on energy minimization,, in Handbook of Optimization in Medicine (eds. P. M. Pardalos and H. E. Romeijn) Springer, (2009), 213.

[20]

B. Jansen, Interior Point Techniques in Optimization,, Kluwer, (1997).

[21]

C. Laird and A. Wächter, Introduction to IPOPT: A Tutorial for Downloading, Installing, and Using IPOPT,, Revision No. 1830. Available from: , (1830).

[22]

J. Min, M. Powell and K. W. Bowyer, Automated performance evaluation of range image segmentation algorithms,, IEEE Trans. Systems, 34 (2004), 263.

[23]

J. Modersitzki, Numerical Methods for Image Registration,, Oxford University Press, (2004).

[24]

J. Modersitzki, FAIR. Flexible Algorithms for Image Registration,, SIAM, (2009).

[25]

R. W. Ogden, Nonlinear elasticity, anisotropy, material stability and residual stresses in soft tissue,, in Biomechanics of Soft Tissue in Cardiovascular Systems (eds. G. A. Holzapfel and R. W. Ogden), (2003), 65.

[26]

K. N. Plataniotis and A. N. Venetsanopoulos, Color Image Processing and Applications,, Springer, (2000).

[27]

H. Richter, Wahrscheinlichkeitstheorie,, Second edition, (1966).

[28]

O. Scherzer, M. Grasmair, H. Grossauer, M. Haltmeier and F. Lenzen, Variational Methods in Imaging,, Springer, (2009).

[29]

A. Wächter and L. T. Biegler, On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming,, Math. Program. Ser. A, 106 (2006), 25.

[30]

M. Wagner, Elastic image registration in presence of polyconvex constraints,, Karl-Franzens-Universität Graz, (2010), 2010.

[31]

M. Wagner, A direct method for the solution of an optimal control problem arising from image registration,, Numerical Algebra, 2 (2012), 487.

[32]

B. Zitová and J. Flusser, Image registration methods: A survey,, Image and Vision Computing, 21 (2003), 977.

[1]

Marcus Wagner. A direct method for the solution of an optimal control problem arising from image registration. Numerical Algebra, Control & Optimization, 2012, 2 (3) : 487-510. doi: 10.3934/naco.2012.2.487

[2]

Xiangtuan Xiong, Jinmei Li, Jin Wen. Some novel linear regularization methods for a deblurring problem. Inverse Problems & Imaging, 2017, 11 (2) : 403-426. doi: 10.3934/ipi.2017019

[3]

Dana Paquin, Doron Levy, Eduard Schreibmann, Lei Xing. Multiscale Image Registration. Mathematical Biosciences & Engineering, 2006, 3 (2) : 389-418. doi: 10.3934/mbe.2006.3.389

[4]

Frank Pörner, Daniel Wachsmuth. Tikhonov regularization of optimal control problems governed by semi-linear partial differential equations. Mathematical Control & Related Fields, 2018, 8 (1) : 315-335. doi: 10.3934/mcrf.2018013

[5]

Bartomeu Coll, Joan Duran, Catalina Sbert. Half-linear regularization for nonconvex image restoration models. Inverse Problems & Imaging, 2015, 9 (2) : 337-370. doi: 10.3934/ipi.2015.9.337

[6]

Alina Toma, Bruno Sixou, Françoise Peyrin. Iterative choice of the optimal regularization parameter in TV image restoration. Inverse Problems & Imaging, 2015, 9 (4) : 1171-1191. doi: 10.3934/ipi.2015.9.1171

[7]

Piermarco Cannarsa, Hélène Frankowska, Elsa M. Marchini. On Bolza optimal control problems with constraints. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 629-653. doi: 10.3934/dcdsb.2009.11.629

[8]

Zhao Yi, Justin W. L. Wan. An inviscid model for nonrigid image registration. Inverse Problems & Imaging, 2011, 5 (1) : 263-284. doi: 10.3934/ipi.2011.5.263

[9]

Jiongmin Yong. A deterministic linear quadratic time-inconsistent optimal control problem. Mathematical Control & Related Fields, 2011, 1 (1) : 83-118. doi: 10.3934/mcrf.2011.1.83

[10]

Peter I. Kogut. On approximation of an optimal boundary control problem for linear elliptic equation with unbounded coefficients. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2105-2133. doi: 10.3934/dcds.2014.34.2105

[11]

Georg Vossen, Torsten Hermanns. On an optimal control problem in laser cutting with mixed finite-/infinite-dimensional constraints. Journal of Industrial & Management Optimization, 2014, 10 (2) : 503-519. doi: 10.3934/jimo.2014.10.503

[12]

Maria do Rosário de Pinho, Ilya Shvartsman. Lipschitz continuity of optimal control and Lagrange multipliers in a problem with mixed and pure state constraints. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 505-522. doi: 10.3934/dcds.2011.29.505

[13]

James P. Nelson, Mark J. Balas. Direct model reference adaptive control of linear systems with input/output delays. Numerical Algebra, Control & Optimization, 2013, 3 (3) : 445-462. doi: 10.3934/naco.2013.3.445

[14]

Iván Area, Faïçal Ndaïrou, Juan J. Nieto, Cristiana J. Silva, Delfim F. M. Torres. Ebola model and optimal control with vaccination constraints. Journal of Industrial & Management Optimization, 2017, 13 (4) : 1-20. doi: 10.3934/jimo.2017054

[15]

Dana Paquin, Doron Levy, Lei Xing. Hybrid multiscale landmark and deformable image registration. Mathematical Biosciences & Engineering, 2007, 4 (4) : 711-737. doi: 10.3934/mbe.2007.4.711

[16]

Christiane Pöschl, Jan Modersitzki, Otmar Scherzer. A variational setting for volume constrained image registration. Inverse Problems & Imaging, 2010, 4 (3) : 505-522. doi: 10.3934/ipi.2010.4.505

[17]

Ulisse Stefanelli, Daniel Wachsmuth, Gerd Wachsmuth. Optimal control of a rate-independent evolution equation via viscous regularization. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1467-1485. doi: 10.3934/dcdss.2017076

[18]

Hang-Chin Lai, Jin-Chirng Lee, Shuh-Jye Chern. A variational problem and optimal control. Journal of Industrial & Management Optimization, 2011, 7 (4) : 967-975. doi: 10.3934/jimo.2011.7.967

[19]

Jianhui Huang, Xun Li, Jiongmin Yong. A linear-quadratic optimal control problem for mean-field stochastic differential equations in infinite horizon. Mathematical Control & Related Fields, 2015, 5 (1) : 97-139. doi: 10.3934/mcrf.2015.5.97

[20]

Thierry Horsin, Peter I. Kogut. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. I. Existence result. Mathematical Control & Related Fields, 2015, 5 (1) : 73-96. doi: 10.3934/mcrf.2015.5.73

2016 Impact Factor: 0.994

Metrics

  • PDF downloads (1)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]