2014, 10(2): 363-381. doi: 10.3934/jimo.2014.10.363

Fractional order optimal control problems with free terminal time

1. 

CIDMA — Center for Research and Development in Mathematics and Applications, Department of Mathematics, University of Aveiro, 3810-193 Aveiro, Portugal, Portugal, Portugal

Received  December 2012 Revised  July 2013 Published  October 2013

We consider fractional order optimal control problems in which the dynamic control system involves integer and fractional order derivatives and the terminal time is free. Necessary conditions for a state/control/terminal-time triplet to be optimal are obtained. Situations with constraints present at the end time are also considered. Under appropriate assumptions, it is shown that the obtained necessary optimality conditions become sufficient. Numerical methods to solve the problems are presented, and some computational simulations are discussed in detail.
Citation: Shakoor Pooseh, Ricardo Almeida, Delfim F. M. Torres. Fractional order optimal control problems with free terminal time. Journal of Industrial & Management Optimization, 2014, 10 (2) : 363-381. doi: 10.3934/jimo.2014.10.363
References:
[1]

O. P. Agrawal, A general formulation and solution scheme for fractional optimal control problems,, Nonlinear Dynam., 38 (2004), 323. doi: 10.1007/s11071-004-3764-6.

[2]

O. P. Agrawal, Fractional variational calculus in terms of Riesz fractional derivatives,, J. Phys. A, 40 (2007), 6287. doi: 10.1088/1751-8113/40/24/003.

[3]

O. P. Agrawal, A formulation and numerical scheme for fractional optimal control problems,, J. Vib. Control, 14 (2008), 1291. doi: 10.1177/1077546307087451.

[4]

O. P. Agrawal, O. Defterli and D. Baleanu, Fractional optimal control problems with several state and control variables,, J. Vib. Control, 16 (2010), 1967. doi: 10.1177/1077546309353361.

[5]

T. M. Atanackovic and B. Stankovic, On a numerical scheme for solving differential equations of fractional order,, Mech. Res. Comm., 35 (2008), 429. doi: 10.1016/j.mechrescom.2008.05.003.

[6]

S. N. Avvakumov and Yu. N. Kiselev, Boundary value problem for ordinary differential equations with applications to optimal control,, in Spectral and Evolution Problems, (1999), 147.

[7]

A. C. Chiang, Elements of Dynamic Optimization,, McGraw-Hill, (1992).

[8]

G. S. F. Frederico and D. F. M. Torres, Fractional optimal control in the sense of Caputo and the fractional Noether's theorem,, Int. Math. Forum, 3 (2008), 479.

[9]

G. S. F. Frederico and D. F. M. Torres, Fractional conservation laws in optimal control theory,, Nonlinear Dynam., 53 (2008), 215. doi: 10.1007/s11071-007-9309-z.

[10]

Z. D. Jelicic and N. Petrovacki, Optimality conditions and a solution scheme for fractional optimal control problems,, Struct. Multidiscip. Optim., 38 (2009), 571. doi: 10.1007/s00158-008-0307-7.

[11]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations,, North-Holland Mathematics Studies, (2006).

[12]

D. E. Kirk, Optimal Control Theory: An Introduction,, Prentice-Hall Inc., (1970).

[13]

Q. Lin, R. Loxton, K. L. Teo and Y. H. Wu, A new computational method for a class of free terminal time optimal control problems,, Pac. J. Optim., 7 (2011), 63.

[14]

Q. Lin, R. Loxton, K. L. Teo and Y. H. Wu, Optimal control computation for nonlinear systems with state-dependent stopping criteria,, Automatica J. IFAC, 48 (2012), 2116. doi: 10.1016/j.automatica.2012.06.055.

[15]

S. Liu, Q. Hu and Y. Xu, Optimal inventory control with fixed ordering cost for selling by Internet auctions,, J. Ind. Manag. Optim., 8 (2012), 19. doi: 10.3934/jimo.2012.8.19.

[16]

A. B. Malinowska and D. F. M. Torres, Introduction to the Fractional Calculus of Variations,, Imperial College Press, (2012).

[17]

K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations,, A Wiley-Interscience Publication, (1993).

[18]

D. Mozyrska and D. F. M. Torres, Minimal modified energy control for fractional linear control systems with the Caputo derivative,, Carpathian J. Math., 26 (2010), 210.

[19]

D. Mozyrska and D. F. M. Torres, Modified optimal energy and initial memory of fractional continuous-time linear systems,, Signal Process., 91 (2011), 379. doi: 10.1016/j.sigpro.2010.07.016.

[20]

S. Pooseh, R. Almeida and D. F. M. Torres, Expansion formulas in terms of integer-order derivatives for the Hadamard fractional integral and derivative,, Numer. Funct. Anal. Optim., 33 (2012), 301. doi: 10.1080/01630563.2011.647197.

[21]

S. Pooseh, R. Almeida and D. F. M. Torres, Approximation of fractional integrals by means of derivatives,, Comput. Math. Appl., 64 (2012), 3090. doi: 10.1016/j.camwa.2012.01.068.

[22]

S. Pooseh, R. Almeida and D. F. M. Torres, Numerical approximations of fractional derivatives with applications,, Asian J. Control, 15 (2013), 698. doi: 10.1002/asjc.617.

[23]

C. Tricaud and Y. Chen, An approximate method for numerically solving fractional order optimal control problems of general form,, Comput. Math. Appl., 59 (2010), 1644. doi: 10.1016/j.camwa.2009.08.006.

[24]

C. Tricaud and Y. Chen, Time-optimal control of systems with fractional dynamics,, Int. J. Differ. Equ., 2010 (2010). doi: 10.1155/2010/461048.

show all references

References:
[1]

O. P. Agrawal, A general formulation and solution scheme for fractional optimal control problems,, Nonlinear Dynam., 38 (2004), 323. doi: 10.1007/s11071-004-3764-6.

[2]

O. P. Agrawal, Fractional variational calculus in terms of Riesz fractional derivatives,, J. Phys. A, 40 (2007), 6287. doi: 10.1088/1751-8113/40/24/003.

[3]

O. P. Agrawal, A formulation and numerical scheme for fractional optimal control problems,, J. Vib. Control, 14 (2008), 1291. doi: 10.1177/1077546307087451.

[4]

O. P. Agrawal, O. Defterli and D. Baleanu, Fractional optimal control problems with several state and control variables,, J. Vib. Control, 16 (2010), 1967. doi: 10.1177/1077546309353361.

[5]

T. M. Atanackovic and B. Stankovic, On a numerical scheme for solving differential equations of fractional order,, Mech. Res. Comm., 35 (2008), 429. doi: 10.1016/j.mechrescom.2008.05.003.

[6]

S. N. Avvakumov and Yu. N. Kiselev, Boundary value problem for ordinary differential equations with applications to optimal control,, in Spectral and Evolution Problems, (1999), 147.

[7]

A. C. Chiang, Elements of Dynamic Optimization,, McGraw-Hill, (1992).

[8]

G. S. F. Frederico and D. F. M. Torres, Fractional optimal control in the sense of Caputo and the fractional Noether's theorem,, Int. Math. Forum, 3 (2008), 479.

[9]

G. S. F. Frederico and D. F. M. Torres, Fractional conservation laws in optimal control theory,, Nonlinear Dynam., 53 (2008), 215. doi: 10.1007/s11071-007-9309-z.

[10]

Z. D. Jelicic and N. Petrovacki, Optimality conditions and a solution scheme for fractional optimal control problems,, Struct. Multidiscip. Optim., 38 (2009), 571. doi: 10.1007/s00158-008-0307-7.

[11]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations,, North-Holland Mathematics Studies, (2006).

[12]

D. E. Kirk, Optimal Control Theory: An Introduction,, Prentice-Hall Inc., (1970).

[13]

Q. Lin, R. Loxton, K. L. Teo and Y. H. Wu, A new computational method for a class of free terminal time optimal control problems,, Pac. J. Optim., 7 (2011), 63.

[14]

Q. Lin, R. Loxton, K. L. Teo and Y. H. Wu, Optimal control computation for nonlinear systems with state-dependent stopping criteria,, Automatica J. IFAC, 48 (2012), 2116. doi: 10.1016/j.automatica.2012.06.055.

[15]

S. Liu, Q. Hu and Y. Xu, Optimal inventory control with fixed ordering cost for selling by Internet auctions,, J. Ind. Manag. Optim., 8 (2012), 19. doi: 10.3934/jimo.2012.8.19.

[16]

A. B. Malinowska and D. F. M. Torres, Introduction to the Fractional Calculus of Variations,, Imperial College Press, (2012).

[17]

K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations,, A Wiley-Interscience Publication, (1993).

[18]

D. Mozyrska and D. F. M. Torres, Minimal modified energy control for fractional linear control systems with the Caputo derivative,, Carpathian J. Math., 26 (2010), 210.

[19]

D. Mozyrska and D. F. M. Torres, Modified optimal energy and initial memory of fractional continuous-time linear systems,, Signal Process., 91 (2011), 379. doi: 10.1016/j.sigpro.2010.07.016.

[20]

S. Pooseh, R. Almeida and D. F. M. Torres, Expansion formulas in terms of integer-order derivatives for the Hadamard fractional integral and derivative,, Numer. Funct. Anal. Optim., 33 (2012), 301. doi: 10.1080/01630563.2011.647197.

[21]

S. Pooseh, R. Almeida and D. F. M. Torres, Approximation of fractional integrals by means of derivatives,, Comput. Math. Appl., 64 (2012), 3090. doi: 10.1016/j.camwa.2012.01.068.

[22]

S. Pooseh, R. Almeida and D. F. M. Torres, Numerical approximations of fractional derivatives with applications,, Asian J. Control, 15 (2013), 698. doi: 10.1002/asjc.617.

[23]

C. Tricaud and Y. Chen, An approximate method for numerically solving fractional order optimal control problems of general form,, Comput. Math. Appl., 59 (2010), 1644. doi: 10.1016/j.camwa.2009.08.006.

[24]

C. Tricaud and Y. Chen, Time-optimal control of systems with fractional dynamics,, Int. J. Differ. Equ., 2010 (2010). doi: 10.1155/2010/461048.

[1]

Enkhbat Rentsen, J. Zhou, K. L. Teo. A global optimization approach to fractional optimal control. Journal of Industrial & Management Optimization, 2016, 12 (1) : 73-82. doi: 10.3934/jimo.2016.12.73

[2]

Agnieszka B. Malinowska, Tatiana Odzijewicz. Optimal control of the discrete-time fractional-order Cucker-Smale model. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 347-357. doi: 10.3934/dcdsb.2018023

[3]

Dariusz Idczak, Rafał Kamocki. Existence of optimal solutions to Lagrange problem for a fractional nonlinear control system with Riemann-Liouville derivative. Mathematical Control & Related Fields, 2017, 7 (3) : 449-464. doi: 10.3934/mcrf.2017016

[4]

Omid S. Fard, Javad Soolaki, Delfim F. M. Torres. A necessary condition of Pontryagin type for fuzzy fractional optimal control problems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (1) : 59-76. doi: 10.3934/dcdss.2018004

[5]

Konstantinos Chrysafinos, Efthimios N. Karatzas. Symmetric error estimates for discontinuous Galerkin approximations for an optimal control problem associated to semilinear parabolic PDE's. Discrete & Continuous Dynamical Systems - B, 2012, 17 (5) : 1473-1506. doi: 10.3934/dcdsb.2012.17.1473

[6]

Hang-Chin Lai, Jin-Chirng Lee, Shuh-Jye Chern. A variational problem and optimal control. Journal of Industrial & Management Optimization, 2011, 7 (4) : 967-975. doi: 10.3934/jimo.2011.7.967

[7]

Giulia Cavagnari. Regularity results for a time-optimal control problem in the space of probability measures. Mathematical Control & Related Fields, 2017, 7 (2) : 213-233. doi: 10.3934/mcrf.2017007

[8]

Jingtao Shi, Juanjuan Xu, Huanshui Zhang. Stochastic recursive optimal control problem with time delay and applications. Mathematical Control & Related Fields, 2015, 5 (4) : 859-888. doi: 10.3934/mcrf.2015.5.859

[9]

Jiongmin Yong. A deterministic linear quadratic time-inconsistent optimal control problem. Mathematical Control & Related Fields, 2011, 1 (1) : 83-118. doi: 10.3934/mcrf.2011.1.83

[10]

Ricardo Almeida. Optimality conditions for fractional variational problems with free terminal time. Discrete & Continuous Dynamical Systems - S, 2018, 11 (1) : 1-19. doi: 10.3934/dcdss.2018001

[11]

Tan H. Cao, Boris S. Mordukhovich. Optimal control of a perturbed sweeping process via discrete approximations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3331-3358. doi: 10.3934/dcdsb.2016100

[12]

Xiang-Kai Sun, Xian-Jun Long, Hong-Yong Fu, Xiao-Bing Li. Some characterizations of robust optimal solutions for uncertain fractional optimization and applications. Journal of Industrial & Management Optimization, 2017, 13 (2) : 803-824. doi: 10.3934/jimo.2016047

[13]

Radoslaw Pytlak. Numerical procedure for optimal control of higher index DAEs. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 647-670. doi: 10.3934/dcds.2011.29.647

[14]

Emmanuel Trélat. Optimal control of a space shuttle, and numerical simulations. Conference Publications, 2003, 2003 (Special) : 842-851. doi: 10.3934/proc.2003.2003.842

[15]

Ellina Grigorieva, Evgenii Khailov, Andrei Korobeinikov. An optimal control problem in HIV treatment. Conference Publications, 2013, 2013 (special) : 311-322. doi: 10.3934/proc.2013.2013.311

[16]

Chonghu Guan, Xun Li, Zuo Quan Xu, Fahuai Yi. A stochastic control problem and related free boundaries in finance. Mathematical Control & Related Fields, 2017, 7 (4) : 563-584. doi: 10.3934/mcrf.2017021

[17]

Xiaoshan Chen, Fahuai Yi. Free boundary problem of Barenblatt equation in stochastic control. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1421-1434. doi: 10.3934/dcdsb.2016003

[18]

Piermarco Cannarsa, Cristina Pignotti, Carlo Sinestrari. Semiconcavity for optimal control problems with exit time. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 975-997. doi: 10.3934/dcds.2000.6.975

[19]

Jérome Lohéac, Jean-François Scheid. Time optimal control for a nonholonomic system with state constraint. Mathematical Control & Related Fields, 2013, 3 (2) : 185-208. doi: 10.3934/mcrf.2013.3.185

[20]

Piermarco Cannarsa, Carlo Sinestrari. On a class of nonlinear time optimal control problems. Discrete & Continuous Dynamical Systems - A, 1995, 1 (2) : 285-300. doi: 10.3934/dcds.1995.1.285

2016 Impact Factor: 0.994

Metrics

  • PDF downloads (1)
  • HTML views (0)
  • Cited by (35)

[Back to Top]