2013, 7(2): 153-208. doi: 10.3934/jmd.2013.7.153

On cyclicity-one elliptic islands of the standard map

1. 

Department of Mathematics, University of Toronto, 40 St George St., Toronto, ON M5S 2E4, Canada

Received  March 2012 Published  September 2013

We study the abundance of a special class of elliptic islands for the standard family of area-preserving diffeomorphism for large parameter values, i.e., far from the KAM regime. Outside a bounded set of parameter values, we prove that the measure of the set of parameter values for which an infinite number of such elliptic islands coexist is zero. On the other hand, we construct a positive Hausdorff dimension set of arbitrarily large parameter values for which the associated standard map admits infinitely many elliptic islands whose centers accumulate on a locally maximal hyperbolic set.
Citation: Jacopo De Simoi. On cyclicity-one elliptic islands of the standard map. Journal of Modern Dynamics, 2013, 7 (2) : 153-208. doi: 10.3934/jmd.2013.7.153
References:
[1]

S. Aubry and P. Y. Le Daeron, The discrete Frenkel-Kontorova model and its extensions. I. Exact results for the ground-states,, Physica D. Nonlinear Phenomena, 8 (1983), 381. doi: 10.1016/0167-2789(83)90233-6.

[2]

Lennart Carleson, Stochastic models of some dynamical systems,, in, 1469 (1991), 1989. doi: 10.1007/BFb0089212.

[3]

Boris V. Chirikov, A universal instability of many-dimensional oscillator systems,, Phys. Rep., 52 (1979), 264. doi: 10.1016/0370-1573(79)90023-1.

[4]

R. de la Llave, J. M. Marco and R. Moriyón, Canonical perturbation theory of Anosov systems and regularity results for the Livšic cohomology equation,, Ann. of Math. (2), 123 (1986), 537. doi: 10.2307/1971334.

[5]

P. Duarte, Elliptic isles in families of area-preserving maps,, Ergodic Theory Dynam. Systems, 28 (2008), 1781. doi: 10.1017/S0143385707000983.

[6]

Pedro Duarte, Plenty of elliptic islands for the standard family of area preserving maps,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 11 (1994), 359.

[7]

Pedro Duarte, Abundance of elliptic isles at conservative bifurcations,, Dynam. Stability Systems, 14 (1999), 339. doi: 10.1080/026811199281930.

[8]

Kenneth J. Falconer, "The Geometry of Fractal Sets,'', Cambridge Tracts in Mathematics, 85 (1986).

[9]

E. Fontich, Transversal homoclinic points of a class of conservative diffeomorphisms,, J. Differential Equations, 87 (1990), 1. doi: 10.1016/0022-0396(90)90012-E.

[10]

J. Frenkel and T. Kontorova, On the theory of plastic deformation and twinning,, Acad. Sci. U.S.S.R. J. Phys., 1 (1939), 137.

[11]

V. G. Gelfreich, A proof of the exponentially small transversality of the separatrices for the standard map,, Communications in Mathematical Physics, 201 (1999), 155. doi: 10.1007/s002200050553.

[12]

V. G. Gelfreich and V. F. Lazutkin, Splitting of separatrices: Perturbation theory and exponential smallness,, Uspekhi Mat. Nauk, 56 (2001), 79. doi: 10.1070/RM2001v056n03ABEH000394.

[13]

S. V. Gonchenko, L. P. Shil'nikov and D. V. Turaev, On models with nonrough Poincaré homoclinic curves,, Homoclinic chaos (Brussels, 62 (1993), 1. doi: 10.1016/0167-2789(93)90268-6.

[14]

S. V. Gonchenko, D. V. Turaev, P. Gaspard and G. Nicolis, Complexity in the bifurcation structure of homoclinic loops to a saddle-focus,, Nonlinearity, 10 (1997), 409. doi: 10.1088/0951-7715/10/2/006.

[15]

A. Gorodetski, On stochastic sea of the standard map,, Communications in Mathematical Physics, 309 (2010), 155. doi: 10.1007/s00220-011-1365-z.

[16]

A. Gorodetski and V. Kaloshin, How often surface diffeomorphisms have infinitely many sinks and hyperbolicity of periodic points near a homoclinic tangency,, Adv. Math., 208 (2007), 710. doi: 10.1016/j.aim.2006.03.012.

[17]

Daniel L. Goroff, Hyperbolic sets for twist maps,, Ergodic Theory Dynam. Systems, 5 (1985), 337. doi: 10.1017/S0143385700002996.

[18]

F. M. Izraelev, Nearly linear mappings and their applications,, Phys. D, 1 (1980), 243. doi: 10.1016/0167-2789(80)90025-1.

[19]

Anatole Katok and Boris Hasselblatt, "Introduction to the Modern Theory of Dynamical Systems,'', With a supplementary chapter by Katok and Leonardo Mendoza, 54 (1995).

[20]

Oliver Knill, Topological entropy of standard type monotone twist maps,, Trans. Amer. Math. Soc., 348 (1996), 2999. doi: 10.1090/S0002-9947-96-01728-X.

[21]

Vladimir F. Lazutkin, "KAM Theory and Semiclassical Approximations to Eigenfunctions,'', With an addendum by A. I. Shnirel'man, 24 (1993).

[22]

Carlangelo Liverani, Birth of an elliptic island in a chaotic sea,, Math. Phys. Electron. J., 10 (2004).

[23]

Leonardo Mora and Neptalí Romero, Moser's invariant curves and homoclinic bifurcations,, Dynamic Systems and Applications, 6 (1997), 29.

[24]

Ya. B. Pesin, Characteristic Lyapunov exponents, and smooth ergodic theory,, Uspehi Mat. Nauk, 32 (1977), 55.

[25]

T. Y. Petrosky, Chaos and cometary clouds in the solar system,, Physics Letters A, 117 (1986), 328. doi: 10.1016/0375-9601(86)90673-0.

[26]

Feliks Przytycki, Examples of conservative diffeomorphisms of the two-dimensional torus with coexistence of elliptic and stochastic behaviour,, Ergodic Theory Dynam. Systems, 2 (1982), 439. doi: 10.1017/S0143385700001711.

[27]

L. D. Pustyl'nikov, Stable and oscillating motions in nonautonomous dynamical systems. A generalization of C. L. Siegel's theorem to the nonautonomous case,, Mat. Sb. (N. S.), 94(136) (1974), 407.

[28]

Ya. G. Sinaĭ, "Topics in Ergodic Theory,'', Princeton Mathematical Series, 44 (1994).

[29]

Laura Tedeschini-Lalli and James A. Yorke, How often do simple dynamical processes have infinitely many coexisting sinks?,, Comm. Math. Phys., 106 (1986), 635. doi: 10.1007/BF01463400.

[30]

Maciej Wojtkowski, A model problem with the coexistence of stochastic and integrable behaviour,, Comm. Math. Phys., 80 (1981), 453. doi: 10.1007/BF01941656.

show all references

References:
[1]

S. Aubry and P. Y. Le Daeron, The discrete Frenkel-Kontorova model and its extensions. I. Exact results for the ground-states,, Physica D. Nonlinear Phenomena, 8 (1983), 381. doi: 10.1016/0167-2789(83)90233-6.

[2]

Lennart Carleson, Stochastic models of some dynamical systems,, in, 1469 (1991), 1989. doi: 10.1007/BFb0089212.

[3]

Boris V. Chirikov, A universal instability of many-dimensional oscillator systems,, Phys. Rep., 52 (1979), 264. doi: 10.1016/0370-1573(79)90023-1.

[4]

R. de la Llave, J. M. Marco and R. Moriyón, Canonical perturbation theory of Anosov systems and regularity results for the Livšic cohomology equation,, Ann. of Math. (2), 123 (1986), 537. doi: 10.2307/1971334.

[5]

P. Duarte, Elliptic isles in families of area-preserving maps,, Ergodic Theory Dynam. Systems, 28 (2008), 1781. doi: 10.1017/S0143385707000983.

[6]

Pedro Duarte, Plenty of elliptic islands for the standard family of area preserving maps,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 11 (1994), 359.

[7]

Pedro Duarte, Abundance of elliptic isles at conservative bifurcations,, Dynam. Stability Systems, 14 (1999), 339. doi: 10.1080/026811199281930.

[8]

Kenneth J. Falconer, "The Geometry of Fractal Sets,'', Cambridge Tracts in Mathematics, 85 (1986).

[9]

E. Fontich, Transversal homoclinic points of a class of conservative diffeomorphisms,, J. Differential Equations, 87 (1990), 1. doi: 10.1016/0022-0396(90)90012-E.

[10]

J. Frenkel and T. Kontorova, On the theory of plastic deformation and twinning,, Acad. Sci. U.S.S.R. J. Phys., 1 (1939), 137.

[11]

V. G. Gelfreich, A proof of the exponentially small transversality of the separatrices for the standard map,, Communications in Mathematical Physics, 201 (1999), 155. doi: 10.1007/s002200050553.

[12]

V. G. Gelfreich and V. F. Lazutkin, Splitting of separatrices: Perturbation theory and exponential smallness,, Uspekhi Mat. Nauk, 56 (2001), 79. doi: 10.1070/RM2001v056n03ABEH000394.

[13]

S. V. Gonchenko, L. P. Shil'nikov and D. V. Turaev, On models with nonrough Poincaré homoclinic curves,, Homoclinic chaos (Brussels, 62 (1993), 1. doi: 10.1016/0167-2789(93)90268-6.

[14]

S. V. Gonchenko, D. V. Turaev, P. Gaspard and G. Nicolis, Complexity in the bifurcation structure of homoclinic loops to a saddle-focus,, Nonlinearity, 10 (1997), 409. doi: 10.1088/0951-7715/10/2/006.

[15]

A. Gorodetski, On stochastic sea of the standard map,, Communications in Mathematical Physics, 309 (2010), 155. doi: 10.1007/s00220-011-1365-z.

[16]

A. Gorodetski and V. Kaloshin, How often surface diffeomorphisms have infinitely many sinks and hyperbolicity of periodic points near a homoclinic tangency,, Adv. Math., 208 (2007), 710. doi: 10.1016/j.aim.2006.03.012.

[17]

Daniel L. Goroff, Hyperbolic sets for twist maps,, Ergodic Theory Dynam. Systems, 5 (1985), 337. doi: 10.1017/S0143385700002996.

[18]

F. M. Izraelev, Nearly linear mappings and their applications,, Phys. D, 1 (1980), 243. doi: 10.1016/0167-2789(80)90025-1.

[19]

Anatole Katok and Boris Hasselblatt, "Introduction to the Modern Theory of Dynamical Systems,'', With a supplementary chapter by Katok and Leonardo Mendoza, 54 (1995).

[20]

Oliver Knill, Topological entropy of standard type monotone twist maps,, Trans. Amer. Math. Soc., 348 (1996), 2999. doi: 10.1090/S0002-9947-96-01728-X.

[21]

Vladimir F. Lazutkin, "KAM Theory and Semiclassical Approximations to Eigenfunctions,'', With an addendum by A. I. Shnirel'man, 24 (1993).

[22]

Carlangelo Liverani, Birth of an elliptic island in a chaotic sea,, Math. Phys. Electron. J., 10 (2004).

[23]

Leonardo Mora and Neptalí Romero, Moser's invariant curves and homoclinic bifurcations,, Dynamic Systems and Applications, 6 (1997), 29.

[24]

Ya. B. Pesin, Characteristic Lyapunov exponents, and smooth ergodic theory,, Uspehi Mat. Nauk, 32 (1977), 55.

[25]

T. Y. Petrosky, Chaos and cometary clouds in the solar system,, Physics Letters A, 117 (1986), 328. doi: 10.1016/0375-9601(86)90673-0.

[26]

Feliks Przytycki, Examples of conservative diffeomorphisms of the two-dimensional torus with coexistence of elliptic and stochastic behaviour,, Ergodic Theory Dynam. Systems, 2 (1982), 439. doi: 10.1017/S0143385700001711.

[27]

L. D. Pustyl'nikov, Stable and oscillating motions in nonautonomous dynamical systems. A generalization of C. L. Siegel's theorem to the nonautonomous case,, Mat. Sb. (N. S.), 94(136) (1974), 407.

[28]

Ya. G. Sinaĭ, "Topics in Ergodic Theory,'', Princeton Mathematical Series, 44 (1994).

[29]

Laura Tedeschini-Lalli and James A. Yorke, How often do simple dynamical processes have infinitely many coexisting sinks?,, Comm. Math. Phys., 106 (1986), 635. doi: 10.1007/BF01463400.

[30]

Maciej Wojtkowski, A model problem with the coexistence of stochastic and integrable behaviour,, Comm. Math. Phys., 80 (1981), 453. doi: 10.1007/BF01941656.

[1]

Sylvie Oliffson Kamphorst, Sônia Pinto de Carvalho. Elliptic islands on the elliptical stadium. Discrete & Continuous Dynamical Systems - A, 2001, 7 (4) : 663-674. doi: 10.3934/dcds.2001.7.663

[2]

Juan Pablo Cárdenas, Gerardo Vidal, Gastón Olivares. Complexity, selectivity and asymmetry in the conformation of the power phenomenon. Analysis of Chilean society. Networks & Heterogeneous Media, 2015, 10 (1) : 167-194. doi: 10.3934/nhm.2015.10.167

[3]

Alessandra Celletti, Sara Di Ruzza. Periodic and quasi--periodic orbits of the dissipative standard map. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 151-171. doi: 10.3934/dcdsb.2011.16.151

[4]

Qiuping Lu, Zhi Ling. Least energy solutions for an elliptic problem involving sublinear term and peaking phenomenon. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2411-2429. doi: 10.3934/cpaa.2015.14.2411

[5]

Shun Kodama. A concentration phenomenon of the least energy solution to non-autonomous elliptic problems with a totally degenerate potential. Communications on Pure & Applied Analysis, 2017, 16 (2) : 671-698. doi: 10.3934/cpaa.2017033

[6]

Hassan Najafi Alishah, Pedro Duarte, Telmo Peixe. Conservative and dissipative polymatrix replicators. Journal of Dynamics & Games, 2015, 2 (2) : 157-185. doi: 10.3934/jdg.2015.2.157

[7]

Carles Simó, Dmitry Treschev. Stability islands in the vicinity of separatrices of near-integrable symplectic maps. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 681-698. doi: 10.3934/dcdsb.2008.10.681

[8]

Haifeng Chu. Surgery on Herman rings of the standard Blaschke family. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 63-74. doi: 10.3934/dcds.2018003

[9]

Abbas Bahri. Attaching maps in the standard geodesics problem on $S^2$. Discrete & Continuous Dynamical Systems - A, 2011, 30 (2) : 379-426. doi: 10.3934/dcds.2011.30.379

[10]

Maksym Berezhnyi, Evgen Khruslov. Non-standard dynamics of elastic composites. Networks & Heterogeneous Media, 2011, 6 (1) : 89-109. doi: 10.3934/nhm.2011.6.89

[11]

Esteban Muñoz-Young, Andrés Navas, Enrique Pujals, Carlos H. Vásquez. A continuous Bowen-Mane type phenomenon. Discrete & Continuous Dynamical Systems - A, 2008, 20 (3) : 713-724. doi: 10.3934/dcds.2008.20.713

[12]

Feng Wang, José Ángel Cid, Mirosława Zima. Lyapunov stability for regular equations and applications to the Liebau phenomenon. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4657-4674. doi: 10.3934/dcds.2018204

[13]

Linfeng Mei, Wei Dong, Changhe Guo. Concentration phenomenon in a nonlocal equation modeling phytoplankton growth. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 587-597. doi: 10.3934/dcdsb.2015.20.587

[14]

Olivier Bonnefon, Jérôme Coville, Guillaume Legendre. Concentration phenomenon in some non-local equation. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 763-781. doi: 10.3934/dcdsb.2017037

[15]

Guoyuan Chen, Youquan Zheng. Concentration phenomenon for fractional nonlinear Schrödinger equations. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2359-2376. doi: 10.3934/cpaa.2014.13.2359

[16]

Charles Pugh, Michael Shub, Alexander Starkov. Unique ergodicity, stable ergodicity, and the Mautner phenomenon for diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2006, 14 (4) : 845-855. doi: 10.3934/dcds.2006.14.845

[17]

Jifeng Chu, Jinzhi Lei, Meirong Zhang. Lyapunov stability for conservative systems with lower degrees of freedom. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 423-443. doi: 10.3934/dcdsb.2011.16.423

[18]

Mário Bessa, Jorge Rocha. Three-dimensional conservative star flows are Anosov. Discrete & Continuous Dynamical Systems - A, 2010, 26 (3) : 839-846. doi: 10.3934/dcds.2010.26.839

[19]

Anatoly Neishtadt, Carles Simó, Dmitry Treschev, Alexei Vasiliev. Periodic orbits and stability islands in chaotic seas created by separatrix crossings in slow-fast systems. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 621-650. doi: 10.3934/dcdsb.2008.10.621

[20]

Daniel Fusca. The Madelung transform as a momentum map. Journal of Geometric Mechanics, 2017, 9 (2) : 157-165. doi: 10.3934/jgm.2017006

2017 Impact Factor: 0.425

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]