2014, 1(1): 17-43. doi: 10.3934/jdg.2014.1.17

Collective attention and ranking methods

1. 

PSE-EHESS, 48 bd Jourdan, Paris, 75014, France

Received  May 2012 Revised  February 2013 Published  June 2013

In a world with a tremendous amount of choices, ranking systems are becoming increasingly important in helping individuals to find information relevant to them. As such, rankings play a crucial role of influencing the attention that is devoted to the various alternatives. This role generates a feedback when the ranking is based on citations, as is the case for PageRank used by Google. The attention bias due to published rankings affects new stated opinions (citations), which will, in turn, affect the next ranking. The purpose of this paper is to investigate this feedback by studying some simple but reasonable dynamics. We show that the long run behavior of the process much depends on the preferences, in particular on their diversity, and on the used ranking method. Two main families of methods are investigated, one based on the notion of handicaps, the other one on the notion of peers' rankings.
Citation: Gabrielle Demange. Collective attention and ranking methods. Journal of Dynamics & Games, 2014, 1 (1) : 17-43. doi: 10.3934/jdg.2014.1.17
References:
[1]

A. Altman and M. Tennenholtz, On the axiomatic foundations of ranking systems,, Proc. 19th International Joint Conference on Artificial Intelligence, (2005), 917.

[2]

R. Amir, Impact-adjusted citations as a measure of journal quality,, CORE DP 74, (2002).

[3]

A.-L. Barabási, R. Albert and H. Jeong, Mean-field theory for scale-free random networks,, Physica A: Statistical Mechanics and its Applications, 272 (1999), 173. doi: 10.1016/S0378-4371(99)00291-5.

[4]

M. Bacharach, Estimating nonnegative matrices from marginal data,, Int. Econ. Rev., 6 (1965), 294. doi: 10.2307/2525582.

[5]

P. Bonacich, Power and centrality: A family of measures,, Amer. J. Sociology, 92 (1987), 1170. doi: 10.1086/228631.

[6]

S. Brin and L. Page, The anatomy of large-scale hypertextual web search engine,, Computer Networks and ISDN Systems, 30 (1998), 107. doi: 10.1016/S0169-7552(98)00110-X.

[7]

J. Cho, S. Roy and R. Adams, Page quality: In search of an unbiased web ranking,, in, (2005), 551. doi: 10.1145/1066157.1066220.

[8]

G. de Clippel, H. Moulin and N. Tideman, Impartial division of a dollar,, J. Econ. Theory, 139 (2008), 176. doi: 10.1016/j.jet.2007.06.005.

[9]

M. H. DeGroot, Reaching a consensus,, J. Am. Stat. Assoc., 69 (1974), 118.

[10]

G. Demange, On the influence of a ranking system,, Soc. Choice Welfare, 39 (2012), 431. doi: 10.1007/s00355-011-0631-5.

[11]

G. Demange, A ranking method based on handicaps,, PSE DP 16 (2012). Available from: \url{http://halshs.archives-ouvertes.fr/halshs-00687180}., (2012).

[12]

P. M. DeMarzo, D. Vayanos and J. Zwiebel, Persuasion bias, social influence, and unidimensional opinions,, Q. J. Econ., 118 (2003), 909. doi: 10.1162/00335530360698469.

[13]

B. Golub and M. Jackson, Naïve learning in social networks and the wisdom of crowds,, Am. Econ. J.: Microeconomics, 2 (2010), 112.

[14]

S. Goyal, Learning in networks,, in, (2005), 122.

[15]

L. Katz, A new status index derived from sociometric analysis,, Psychometrika, 18 (1953), 39. doi: 10.1007/BF02289026.

[16]

J. Kleinberg, Authoritative sources in a hyperlinked environment,, J. ACM, 46 (1999), 604. doi: 10.1145/324133.324140.

[17]

S. J. Liebowitz and J. C. Palmer, Assessing the relative impacts of economics journals,, J. Econ. Lit., 22 (1984), 77.

[18]

I. Palacios-Huerta and O. Volij, The measurement of intellectual influence,, Econometrica, 72 (2004), 963.

[19]

S. Pandey, S. Roy, C. Olston, J. Cho and S. Chakrabarti, Shuffling a stacked deck: The case for partially randomized ranking of search engine results,, VLDP Conference, (2005), 781.

[20]

G. Pinski and F. Narin, Citation influence for journal aggregates of scientific publications: Theory, with application to the literature of physics,, Information Processing and Management, 12 (1976), 297. doi: 10.1016/0306-4573(76)90048-0.

[21]

G. Slutzki and O. Volij, Scoring of web pages and tournaments-axiomatizations,, Soc. Choice Welfare, 26 (2006), 75. doi: 10.1007/s00355-005-0033-7.

show all references

References:
[1]

A. Altman and M. Tennenholtz, On the axiomatic foundations of ranking systems,, Proc. 19th International Joint Conference on Artificial Intelligence, (2005), 917.

[2]

R. Amir, Impact-adjusted citations as a measure of journal quality,, CORE DP 74, (2002).

[3]

A.-L. Barabási, R. Albert and H. Jeong, Mean-field theory for scale-free random networks,, Physica A: Statistical Mechanics and its Applications, 272 (1999), 173. doi: 10.1016/S0378-4371(99)00291-5.

[4]

M. Bacharach, Estimating nonnegative matrices from marginal data,, Int. Econ. Rev., 6 (1965), 294. doi: 10.2307/2525582.

[5]

P. Bonacich, Power and centrality: A family of measures,, Amer. J. Sociology, 92 (1987), 1170. doi: 10.1086/228631.

[6]

S. Brin and L. Page, The anatomy of large-scale hypertextual web search engine,, Computer Networks and ISDN Systems, 30 (1998), 107. doi: 10.1016/S0169-7552(98)00110-X.

[7]

J. Cho, S. Roy and R. Adams, Page quality: In search of an unbiased web ranking,, in, (2005), 551. doi: 10.1145/1066157.1066220.

[8]

G. de Clippel, H. Moulin and N. Tideman, Impartial division of a dollar,, J. Econ. Theory, 139 (2008), 176. doi: 10.1016/j.jet.2007.06.005.

[9]

M. H. DeGroot, Reaching a consensus,, J. Am. Stat. Assoc., 69 (1974), 118.

[10]

G. Demange, On the influence of a ranking system,, Soc. Choice Welfare, 39 (2012), 431. doi: 10.1007/s00355-011-0631-5.

[11]

G. Demange, A ranking method based on handicaps,, PSE DP 16 (2012). Available from: \url{http://halshs.archives-ouvertes.fr/halshs-00687180}., (2012).

[12]

P. M. DeMarzo, D. Vayanos and J. Zwiebel, Persuasion bias, social influence, and unidimensional opinions,, Q. J. Econ., 118 (2003), 909. doi: 10.1162/00335530360698469.

[13]

B. Golub and M. Jackson, Naïve learning in social networks and the wisdom of crowds,, Am. Econ. J.: Microeconomics, 2 (2010), 112.

[14]

S. Goyal, Learning in networks,, in, (2005), 122.

[15]

L. Katz, A new status index derived from sociometric analysis,, Psychometrika, 18 (1953), 39. doi: 10.1007/BF02289026.

[16]

J. Kleinberg, Authoritative sources in a hyperlinked environment,, J. ACM, 46 (1999), 604. doi: 10.1145/324133.324140.

[17]

S. J. Liebowitz and J. C. Palmer, Assessing the relative impacts of economics journals,, J. Econ. Lit., 22 (1984), 77.

[18]

I. Palacios-Huerta and O. Volij, The measurement of intellectual influence,, Econometrica, 72 (2004), 963.

[19]

S. Pandey, S. Roy, C. Olston, J. Cho and S. Chakrabarti, Shuffling a stacked deck: The case for partially randomized ranking of search engine results,, VLDP Conference, (2005), 781.

[20]

G. Pinski and F. Narin, Citation influence for journal aggregates of scientific publications: Theory, with application to the literature of physics,, Information Processing and Management, 12 (1976), 297. doi: 10.1016/0306-4573(76)90048-0.

[21]

G. Slutzki and O. Volij, Scoring of web pages and tournaments-axiomatizations,, Soc. Choice Welfare, 26 (2006), 75. doi: 10.1007/s00355-005-0033-7.

[1]

El-Sayed M.E. Mostafa. A nonlinear conjugate gradient method for a special class of matrix optimization problems. Journal of Industrial & Management Optimization, 2014, 10 (3) : 883-903. doi: 10.3934/jimo.2014.10.883

[2]

Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006

[3]

R. Baier, M. Dellnitz, M. Hessel-von Molo, S. Sertl, I. G. Kevrekidis. The computation of convex invariant sets via Newton's method. Journal of Computational Dynamics, 2014, 1 (1) : 39-69. doi: 10.3934/jcd.2014.1.39

[4]

Klas Modin. Geometry of matrix decompositions seen through optimal transport and information geometry. Journal of Geometric Mechanics, 2017, 9 (3) : 335-390. doi: 10.3934/jgm.2017014

[5]

Aldana M. González Montoro, Ricardo Cao, Christel Faes, Geert Molenberghs, Nelson Espinosa, Javier Cudeiro, Jorge Mariño. Cross nearest-spike interval based method to measure synchrony dynamics. Mathematical Biosciences & Engineering, 2014, 11 (1) : 27-48. doi: 10.3934/mbe.2014.11.27

[6]

Alessandro Corbetta, Adrian Muntean, Kiamars Vafayi. Parameter estimation of social forces in pedestrian dynamics models via a probabilistic method. Mathematical Biosciences & Engineering, 2015, 12 (2) : 337-356. doi: 10.3934/mbe.2015.12.337

[7]

Luca Dieci, Cinzia Elia. Smooth to discontinuous systems: A geometric and numerical method for slow-fast dynamics. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-16. doi: 10.3934/dcdsb.2018112

[8]

Àlex Haro, Rafael de la Llave. A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps: Numerical algorithms. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1261-1300. doi: 10.3934/dcdsb.2006.6.1261

[9]

Inmaculada Baldomá, Ernest Fontich, Rafael de la Llave, Pau Martín. The parameterization method for one- dimensional invariant manifolds of higher dimensional parabolic fixed points. Discrete & Continuous Dynamical Systems - A, 2007, 17 (4) : 835-865. doi: 10.3934/dcds.2007.17.835

[10]

Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83

[11]

Mikhail B. Sevryuk. Invariant tori in quasi-periodic non-autonomous dynamical systems via Herman's method. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 569-595. doi: 10.3934/dcds.2007.18.569

[12]

Sharif E. Guseynov, Sergey M. Yunusov. New regularizing approach to determining the influence coefficient matrix for gas-turbine engines. Conference Publications, 2011, 2011 (Special) : 614-623. doi: 10.3934/proc.2011.2011.614

[13]

Andreas Widder, Christian Kuehn. Heterogeneous population dynamics and scaling laws near epidemic outbreaks. Mathematical Biosciences & Engineering, 2016, 13 (5) : 1093-1118. doi: 10.3934/mbe.2016032

[14]

Fatiha Alabau-Boussouira. On the influence of the coupling on the dynamics of single-observed cascade systems of PDE's. Mathematical Control & Related Fields, 2015, 5 (1) : 1-30. doi: 10.3934/mcrf.2015.5.1

[15]

Yu Yang, Dongmei Xiao. Influence of latent period and nonlinear incidence rate on the dynamics of SIRS epidemiological models. Discrete & Continuous Dynamical Systems - B, 2010, 13 (1) : 195-211. doi: 10.3934/dcdsb.2010.13.195

[16]

Jihoon Lee. Scaling invariant blow-up criteria for simplified versions of Ericksen-Leslie system. Discrete & Continuous Dynamical Systems - S, 2015, 8 (2) : 381-388. doi: 10.3934/dcdss.2015.8.381

[17]

Luis A. Caffarelli, Alexis F. Vasseur. The De Giorgi method for regularity of solutions of elliptic equations and its applications to fluid dynamics. Discrete & Continuous Dynamical Systems - S, 2010, 3 (3) : 409-427. doi: 10.3934/dcdss.2010.3.409

[18]

Qi Wang, Huilian Peng, Fangfang Zhuang. A constraint-stabilized method for multibody dynamics with friction-affected translational joints based on HLCP. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 589-605. doi: 10.3934/dcdsb.2011.16.589

[19]

S. L. Ma'u, P. Ramankutty. An averaging method for the Helmholtz equation. Conference Publications, 2003, 2003 (Special) : 604-609. doi: 10.3934/proc.2003.2003.604

[20]

Yongbin Ou, Cun-Quan Zhang. A new multimembership clustering method. Journal of Industrial & Management Optimization, 2007, 3 (4) : 619-624. doi: 10.3934/jimo.2007.3.619

 Impact Factor: 

Metrics

  • PDF downloads (3)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]