2013, 7(1): 99-117. doi: 10.3934/jmd.2013.7.99

Topological characterization of canonical Thurston obstructions

1. 

Institute for Mathematical Sciences, Stony Brook University, Stony Brook, NY 11794-3660, United States

Received  August 2012 Published  May 2013

Let $f$ be an obstructed Thurston map with canonical obstruction $\Gamma_f$. We prove the following generalization of Pilgrim's conjecture: if the first-return map $F$ of a periodic component $C$ of the topological surface obtained from the sphere by pinching the curves of $\Gamma_f$ is a Thurston map then the canonical obstruction of $F$ is empty. Using this result, we give a complete topological characterization of canonical Thurston obstructions.
Citation: Nikita Selinger. Topological characterization of canonical Thurston obstructions. Journal of Modern Dynamics, 2013, 7 (1) : 99-117. doi: 10.3934/jmd.2013.7.99
References:
[1]

S. Bonnot, M. Braverman and M. Yampolsky, Thurston equivalence to a rational map is decidable,, to appear in Moscow Math. J., (2010).

[2]

A. Chéritat, Tan Lei and Shishikura's example of non-mateable degree 3 polynomials without a Levy cycle,, to appear in Annales de la faculté des sciences de Toulouse, (2012).

[3]

A. Douady and J. H. Hubbard, A proof of Thurston's topological characterization of rational functions,, Acta Math., 171 (1993), 263. doi: 10.1007/BF02392534.

[4]

F. R. Gantmacher, "Teoriya Matrits,", Second supplemented edition, (1966).

[5]

J. H. Hubbard, "Teichmüller Theory and Applications to Geometry, Topology, and Dynamics. Vol. 1. Teichmüller Theory,", With contributions by Adrien Douady, (2006).

[6]

Y. Imayoshi and M. Taniguchi, "An Introduction to Teichmüller Spaces,", Translated and revised from the Japanese by the authors, (1992). doi: 10.1007/978-4-431-68174-8.

[7]

O. Lehto and K. I. Virtanen, "Quasiconformal Mappings in the Plane,", Second edition, (1973).

[8]

C. T. McMullen, "Complex Dynamics and Renormalization,", Annals of Mathematics Studies, 135 (1994).

[9]

J. Milnor, "Dynamics in One Complex Variable,", Third edition, 160 (2006).

[10]

_____, On Lattès maps,, in, (2006), 9.

[11]

K. M. Pilgrim, Canonical Thurston obstructions,, Adv. Math., 158 (2001), 154. doi: 10.1006/aima.2000.1971.

[12]

_____, "Combinations of Complex Dynamical Systems,", Lecture Notes in Mathematics, 1827 (2003).

[13]

N. Selinger, "On Thurston's Characterization Theorem for Branched Covers,", Ph.D Thesis, (2011).

[14]

_____, Thurston's pullback map on the augmented Teichmüller space and applications,, Inventiones Mathematicae, 189 (2012), 111.

[15]

S. A. Wolpert, Geometry of the Weil-Petersson completion of Teichmüller space,, in, VIII (2003), 357.

[16]

_____, The Weil-Petersson metric geometry,, in, 13 (2009), 47.

show all references

References:
[1]

S. Bonnot, M. Braverman and M. Yampolsky, Thurston equivalence to a rational map is decidable,, to appear in Moscow Math. J., (2010).

[2]

A. Chéritat, Tan Lei and Shishikura's example of non-mateable degree 3 polynomials without a Levy cycle,, to appear in Annales de la faculté des sciences de Toulouse, (2012).

[3]

A. Douady and J. H. Hubbard, A proof of Thurston's topological characterization of rational functions,, Acta Math., 171 (1993), 263. doi: 10.1007/BF02392534.

[4]

F. R. Gantmacher, "Teoriya Matrits,", Second supplemented edition, (1966).

[5]

J. H. Hubbard, "Teichmüller Theory and Applications to Geometry, Topology, and Dynamics. Vol. 1. Teichmüller Theory,", With contributions by Adrien Douady, (2006).

[6]

Y. Imayoshi and M. Taniguchi, "An Introduction to Teichmüller Spaces,", Translated and revised from the Japanese by the authors, (1992). doi: 10.1007/978-4-431-68174-8.

[7]

O. Lehto and K. I. Virtanen, "Quasiconformal Mappings in the Plane,", Second edition, (1973).

[8]

C. T. McMullen, "Complex Dynamics and Renormalization,", Annals of Mathematics Studies, 135 (1994).

[9]

J. Milnor, "Dynamics in One Complex Variable,", Third edition, 160 (2006).

[10]

_____, On Lattès maps,, in, (2006), 9.

[11]

K. M. Pilgrim, Canonical Thurston obstructions,, Adv. Math., 158 (2001), 154. doi: 10.1006/aima.2000.1971.

[12]

_____, "Combinations of Complex Dynamical Systems,", Lecture Notes in Mathematics, 1827 (2003).

[13]

N. Selinger, "On Thurston's Characterization Theorem for Branched Covers,", Ph.D Thesis, (2011).

[14]

_____, Thurston's pullback map on the augmented Teichmüller space and applications,, Inventiones Mathematicae, 189 (2012), 111.

[15]

S. A. Wolpert, Geometry of the Weil-Petersson completion of Teichmüller space,, in, VIII (2003), 357.

[16]

_____, The Weil-Petersson metric geometry,, in, 13 (2009), 47.

[1]

Peter Haïssinsky, Kevin M. Pilgrim. An algebraic characterization of expanding Thurston maps. Journal of Modern Dynamics, 2012, 6 (4) : 451-476. doi: 10.3934/jmd.2012.6.451

[2]

Rui Gao, Weixiao Shen. Analytic skew-products of quadratic polynomials over Misiurewicz-Thurston maps. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2013-2036. doi: 10.3934/dcds.2014.34.2013

[3]

Huaibin Li. An equivalent characterization of the summability condition for rational maps. Discrete & Continuous Dynamical Systems - A, 2013, 33 (10) : 4567-4578. doi: 10.3934/dcds.2013.33.4567

[4]

Yan Gao, Jinsong Zeng, Suo Zhao. A characterization of Sierpiński carpet rational maps. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 5049-5063. doi: 10.3934/dcds.2017218

[5]

Pedro A. S. Salomão. The Thurston operator for semi-finite combinatorics. Discrete & Continuous Dynamical Systems - A, 2006, 16 (4) : 883-896. doi: 10.3934/dcds.2006.16.883

[6]

Guizhen Cui, Yan Gao. Wandering continua for rational maps. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1321-1329. doi: 10.3934/dcds.2016.36.1321

[7]

Cezar Joiţa, William O. Nowell, Pantelimon Stănică. Chaotic dynamics of some rational maps. Discrete & Continuous Dynamical Systems - A, 2005, 12 (2) : 363-375. doi: 10.3934/dcds.2005.12.363

[8]

Eriko Hironaka, Sarah Koch. A disconnected deformation space of rational maps. Journal of Modern Dynamics, 2017, 11: 409-423. doi: 10.3934/jmd.2017016

[9]

Jeffrey Diller, Han Liu, Roland K. W. Roeder. Typical dynamics of plane rational maps with equal degrees. Journal of Modern Dynamics, 2016, 10: 353-377. doi: 10.3934/jmd.2016.10.353

[10]

John Hubbard, Yulij Ilyashenko. A proof of Kolmogorov's theorem. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 367-385. doi: 10.3934/dcds.2004.10.367

[11]

Rabah Amir, Igor V. Evstigneev. On Zermelo's theorem. Journal of Dynamics & Games, 2017, 4 (3) : 191-194. doi: 10.3934/jdg.2017011

[12]

Weiyuan Qiu, Fei Yang, Yongcheng Yin. Quasisymmetric geometry of the Cantor circles as the Julia sets of rational maps. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3375-3416. doi: 10.3934/dcds.2016.36.3375

[13]

Aihua Fan, Shilei Fan, Lingmin Liao, Yuefei Wang. Minimality of p-adic rational maps with good reduction. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3161-3182. doi: 10.3934/dcds.2017135

[14]

Sergei Ivanov. On Helly's theorem in geodesic spaces. Electronic Research Announcements, 2014, 21: 109-112. doi: 10.3934/era.2014.21.109

[15]

Hahng-Yun Chu, Se-Hyun Ku, Jong-Suh Park. Conley's theorem for dispersive systems. Discrete & Continuous Dynamical Systems - S, 2015, 8 (2) : 313-321. doi: 10.3934/dcdss.2015.8.313

[16]

Eric Babson and Dmitry N. Kozlov. Topological obstructions to graph colorings. Electronic Research Announcements, 2003, 9: 61-68.

[17]

Jun Hu, Oleg Muzician, Yingqing Xiao. Dynamics of regularly ramified rational maps: Ⅰ. Julia sets of maps in one-parameter families. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3189-3221. doi: 10.3934/dcds.2018139

[18]

Betseygail Rand, Lorenzo Sadun. An approximation theorem for maps between tiling spaces. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 323-326. doi: 10.3934/dcds.2011.29.323

[19]

V. Niţicâ. Journé's theorem for $C^{n,\omega}$ regularity. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1&2) : 413-425. doi: 10.3934/dcds.2008.22.413

[20]

Jacques Féjoz. On "Arnold's theorem" on the stability of the solar system. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3555-3565. doi: 10.3934/dcds.2013.33.3555

2017 Impact Factor: 0.425

Metrics

  • PDF downloads (2)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]