2013, 7(1): 31-44. doi: 10.3934/jmd.2013.7.31

Growth of periodic orbits and generalized diagonals for typical triangular billiards

1. 

Department of Mathematics, University of Oklahoma, Norman, OK 73019-3103, United States

Received  May 2012 Revised  October 2012 Published  May 2013

We prove that for any $\epsilon>0$ the growth rate $P_n$ of generalized diagonals or periodic orbits of a typical (in the Lebesgue measure sense) triangular billiard satisfies: $P_n < Ce^{n^{\sqrt{3}-1+\epsilon}}$. This provides an explicit subexponential estimate on the triangular billiard complexity and answers a long-standing open question for typical triangles. This also makes progress towards a solution of Problem 3 in Katok's list of "Five most resistant problems in dynamics". The proof uses essentially new geometric ideas and does not rely on the rational approximations.
Citation: Dmitri Scheglov. Growth of periodic orbits and generalized diagonals for typical triangular billiards. Journal of Modern Dynamics, 2013, 7 (1) : 31-44. doi: 10.3934/jmd.2013.7.31
References:
[1]

J. Cassaigne, P. Hubert and S. Troubetzkoy, Complexity and growth for polygonal billiards,, Ann. Inst. Fourier (Grenoble), 52 (2002), 835.

[2]

E. Gutkin and M. Rams, Growth rates for geometric complexities and counting functions in polygonal billiards,, Ergodic Theory Dynam. Systems, 29 (2009), 1163. doi: 10.1017/S0143385708080620.

[3]

E. Gutkin and S. Tabachnikov, Complexity of piecewise convex transformations in two dimensions, with applications to polygonal billiards on surfaces of constant curvature,, (English summary) Mosc. Math. J., 6 (2006), 673.

[4]

E. Gutkin and S. Troubetzkoy, Directional flows and strong recurrence for polygonal billiards,, Proceedings of the International Congress of Dynamical Systems, ().

[5]

B. Hasselblatt, ed., "Dynamics, Ergodic Theory, and Geometry,", Mathematical Sciences Research Institute Publications, 54 (2007). doi: 10.1017/CBO9780511755187.

[6]

V. Kaloshin and I. Rodnianski, Diophantine properties of elements of SO(3),, Geom. Funct. Anal., 11 (2001), 953. doi: 10.1007/s00039-001-8222-8.

[7]

A. Katok, Five most resistant problems in dynamics., Available from: \url{http://www.math.psu.edu/katok_a/pub/5problems-expanded.pdf}., ().

[8]

A. Katok, The growth rate for the number of singular and periodic orbits for a polygonal billiard,, Comm. Math. Phys., 111 (1987), 151. doi: 10.1007/BF01239021.

[9]

A. Katok and A. Zemlyakov, Topological transitivity of billiards in polygons,, Mat. Zametki, 18 (1975), 291.

[10]

H. Masur, The growth rate of trajectories of a quadratic differential,, Ergod. Th. Dyn. Sys., 10 (1990), 151. doi: 10.1017/S0143385700005459.

[11]

H. Masur, Lower bounds for the number of saddle connections and closed trajectories of a quadratic differential,, in, 10 (1986). doi: 10.1007/978-1-4613-9602-4_20.

[12]

D. Scheglov, Lower bounds on directional complexity for irrational triangle billiards,, preprint., ().

[13]

S. Troubetzkoy, Complexity lower bounds for polygonal billiards,, Chaos, 8 (1998), 242. doi: 10.1063/1.166301.

[14]

Y. Vorobets, Ergodicity of billiards in polygons,, Mat. Sb., 188 (1997), 65. doi: 10.1070/SM1997v188n03ABEH000211.

show all references

References:
[1]

J. Cassaigne, P. Hubert and S. Troubetzkoy, Complexity and growth for polygonal billiards,, Ann. Inst. Fourier (Grenoble), 52 (2002), 835.

[2]

E. Gutkin and M. Rams, Growth rates for geometric complexities and counting functions in polygonal billiards,, Ergodic Theory Dynam. Systems, 29 (2009), 1163. doi: 10.1017/S0143385708080620.

[3]

E. Gutkin and S. Tabachnikov, Complexity of piecewise convex transformations in two dimensions, with applications to polygonal billiards on surfaces of constant curvature,, (English summary) Mosc. Math. J., 6 (2006), 673.

[4]

E. Gutkin and S. Troubetzkoy, Directional flows and strong recurrence for polygonal billiards,, Proceedings of the International Congress of Dynamical Systems, ().

[5]

B. Hasselblatt, ed., "Dynamics, Ergodic Theory, and Geometry,", Mathematical Sciences Research Institute Publications, 54 (2007). doi: 10.1017/CBO9780511755187.

[6]

V. Kaloshin and I. Rodnianski, Diophantine properties of elements of SO(3),, Geom. Funct. Anal., 11 (2001), 953. doi: 10.1007/s00039-001-8222-8.

[7]

A. Katok, Five most resistant problems in dynamics., Available from: \url{http://www.math.psu.edu/katok_a/pub/5problems-expanded.pdf}., ().

[8]

A. Katok, The growth rate for the number of singular and periodic orbits for a polygonal billiard,, Comm. Math. Phys., 111 (1987), 151. doi: 10.1007/BF01239021.

[9]

A. Katok and A. Zemlyakov, Topological transitivity of billiards in polygons,, Mat. Zametki, 18 (1975), 291.

[10]

H. Masur, The growth rate of trajectories of a quadratic differential,, Ergod. Th. Dyn. Sys., 10 (1990), 151. doi: 10.1017/S0143385700005459.

[11]

H. Masur, Lower bounds for the number of saddle connections and closed trajectories of a quadratic differential,, in, 10 (1986). doi: 10.1007/978-1-4613-9602-4_20.

[12]

D. Scheglov, Lower bounds on directional complexity for irrational triangle billiards,, preprint., ().

[13]

S. Troubetzkoy, Complexity lower bounds for polygonal billiards,, Chaos, 8 (1998), 242. doi: 10.1063/1.166301.

[14]

Y. Vorobets, Ergodicity of billiards in polygons,, Mat. Sb., 188 (1997), 65. doi: 10.1070/SM1997v188n03ABEH000211.

[1]

Stefano Galatolo. Orbit complexity and data compression. Discrete & Continuous Dynamical Systems - A, 2001, 7 (3) : 477-486. doi: 10.3934/dcds.2001.7.477

[2]

Valentin Afraimovich, Lev Glebsky, Rosendo Vazquez. Measures related to metric complexity. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1299-1309. doi: 10.3934/dcds.2010.28.1299

[3]

Serge Tabachnikov. Birkhoff billiards are insecure. Discrete & Continuous Dynamical Systems - A, 2009, 23 (3) : 1035-1040. doi: 10.3934/dcds.2009.23.1035

[4]

Simon Castle, Norbert Peyerimhoff, Karl Friedrich Siburg. Billiards in ideal hyperbolic polygons. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 893-908. doi: 10.3934/dcds.2011.29.893

[5]

Richard Evan Schwartz. Outer billiards and the pinwheel map. Journal of Modern Dynamics, 2011, 5 (2) : 255-283. doi: 10.3934/jmd.2011.5.255

[6]

W. Patrick Hooper, Richard Evan Schwartz. Billiards in nearly isosceles triangles. Journal of Modern Dynamics, 2009, 3 (2) : 159-231. doi: 10.3934/jmd.2009.3.159

[7]

Mickaël Kourganoff. Uniform hyperbolicity in nonflat billiards. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1145-1160. doi: 10.3934/dcds.2018048

[8]

Valentin Afraimovich, Maurice Courbage, Lev Glebsky. Directional complexity and entropy for lift mappings. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3385-3401. doi: 10.3934/dcdsb.2015.20.3385

[9]

Hong-Kun Zhang. Free path of billiards with flat points. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4445-4466. doi: 10.3934/dcds.2012.32.4445

[10]

W. Patrick Hooper, Richard Evan Schwartz. Erratum: Billiards in nearly isosceles triangles. Journal of Modern Dynamics, 2014, 8 (1) : 133-137. doi: 10.3934/jmd.2014.8.133

[11]

Richard Evan Schwartz. Unbounded orbits for outer billiards I. Journal of Modern Dynamics, 2007, 1 (3) : 371-424. doi: 10.3934/jmd.2007.1.371

[12]

Erik M. Bollt, Joseph D. Skufca, Stephen J . McGregor. Control entropy: A complexity measure for nonstationary signals. Mathematical Biosciences & Engineering, 2009, 6 (1) : 1-25. doi: 10.3934/mbe.2009.6.1

[13]

Valentin Afraimovich, Lev Glebsky. Measures related to $(\epsilon,n)$-complexity functions. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1/2) : 23-34. doi: 10.3934/dcds.2008.22.23

[14]

Enrico Capobianco. Born to be big: Data, graphs, and their entangled complexity. Big Data & Information Analytics, 2016, 1 (2/3 ) : 163-169. doi: 10.3934/bdia.2016002

[15]

Stefano Galatolo. Global and local complexity in weakly chaotic dynamical systems. Discrete & Continuous Dynamical Systems - A, 2003, 9 (6) : 1607-1624. doi: 10.3934/dcds.2003.9.1607

[16]

Andrew Klapper. The asymptotic behavior of N-adic complexity. Advances in Mathematics of Communications, 2007, 1 (3) : 307-319. doi: 10.3934/amc.2007.1.307

[17]

Roland Zweimüller. Asymptotic orbit complexity of infinite measure preserving transformations. Discrete & Continuous Dynamical Systems - A, 2006, 15 (1) : 353-366. doi: 10.3934/dcds.2006.15.353

[18]

Easton Li Xu, Weiping Shang, Guangyue Han. Network encoding complexity: Exact values, bounds, and inequalities. Advances in Mathematics of Communications, 2017, 11 (3) : 567-594. doi: 10.3934/amc.2017044

[19]

Richard Evan Schwartz. Research announcement: unbounded orbits for outer billiards. Electronic Research Announcements, 2007, 14: 1-6. doi: 10.3934/era.2007.14.1

[20]

Vladimir Dragović, Milena Radnović. Pseudo-integrable billiards and arithmetic dynamics. Journal of Modern Dynamics, 2014, 8 (1) : 109-132. doi: 10.3934/jmd.2014.8.109

2016 Impact Factor: 0.706

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]