2013, 7(1): 45-74. doi: 10.3934/jmd.2013.7.45

On bounded cocycles of isometries over minimal dynamics

1. 

Departamento deMatemática, UNAB, República 220, 2 piso, Santiago, Chile

2. 

Departamento de Matemática y C.C., USACH, Alameda 3363, Estación Central, Santiago, Chile

3. 

Facultad deMatemáticas, Pontificia Universidad Católica de Chile, Casilla 306, Santiago 22, Chile

Received  June 2012 Revised  January 2013 Published  May 2013

We show the following geometric generalization of a classical theorem of W. H. Gottschalk and G. A. Hedlund: a skew action induced by a cocycle of (affine) isometries of a Hilbert space over a minimal dynamical system has a continuous invariant section if and only if the cocycle is bounded. Equivalently, the associated twisted cohomological equation has a continuous solution if and only if the cocycle is bounded. We interpret this as a version of the Bruhat-Tits Center Lemma in the space of continuous functions. Our result also holds when the fiber is a proper CAT(0) space. One of the applications concerns matrix cocycles. Using the action of $\mathrm{GL} (n,\mathbb{R})$ on the (nonpositively curved) space of positively definite matrices, we show that every bounded linear cocycle over a minimal dynamical system is cohomologous to a cocycle taking values in the orthogonal group.
Citation: Daniel Coronel, Andrés Navas, Mario Ponce. On bounded cocycles of isometries over minimal dynamics. Journal of Modern Dynamics, 2013, 7 (1) : 45-74. doi: 10.3934/jmd.2013.7.45
References:
[1]

G. Atkinson, A class of transitive cylinder transformations,, J. London Math. Soc. (2), 17 (1978), 263. doi: 10.1112/jlms/s2-17.2.263.

[2]

U. Bader, T. Gelander and N. Monod, A fixed point theorem for $L^1$ spaces,, Inventiones Mathematicae, 189 (2012), 143. doi: 10.1007/s00222-011-0363-2.

[3]

U. Bader, A. Furman, T. Gelander and N. Monod, Property (T) and rigidity for actions on Banach spaces,, Acta Math., 198 (2007), 57. doi: 10.1007/s11511-007-0013-0.

[4]

R. Baire, "Leçons sur les Fonctions Discontinues,", Les Grands Classiques Gauthier-Villars, (1995).

[5]

A. Ballmann, "Lectures on Spaces of Nonpositive Curvature,", DMV Seminar, 25 (1995). doi: 10.1007/978-3-0348-9240-7.

[6]

S. Banach, "Théorie des Opérations Linéaires,", Monografie Matematyczne, 1 (1932).

[7]

M. R. Bridson and A. Haefliger, "Metric Spaces of Non-Positive Curvature,", Grundlehren der Mathematischen Wissenschaften, 319 (1999).

[8]

F. Bruhat and J. Tits, Groupes réductifs sur un corps local,, Inst. Hautes Études Sci. Publ. Math., 41 (1972), 5.

[9]

D. Coronel, A. Navas and M. Ponce, On the dynamics of non-reducible cylindrical vortices,, J. Lond. Math. Soc. (2), 85 (2012), 789. doi: 10.1112/jlms/jdr068.

[10]

W. H. Gottschalk and G. A. Hedlund, "Topological Dynamics,", American Mathematical Society Colloquium Publications, (1955).

[11]

M.-R. Herman, Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations,, Inst. Hautes Études Sci. Publ. Math., 49 (1979), 5.

[12]

M. Jerison, The space of bounded maps into a Banach space,, Annals of Math. (2), 52 (1950), 309. doi: 10.2307/1969472.

[13]

V. Kaimanovich, Double ergodicity of the Poisson boundary and applications to bounded cohomology,, Geom. and Functional Analysis (GAFA), 13 (2003), 852. doi: 10.1007/s00039-003-0433-8.

[14]

B. Kalinin, Livšic theorem for matrix cocycles,, Annals of Math. (2), 173 (2011), 1025. doi: 10.4007/annals.2011.173.2.11.

[15]

B. Kalinin and V. Sadovskaya, Linear cocycles over hyperbolic systems and criteria of conformality,, J. Mod. Dyn., 4 (2010), 419. doi: 10.3934/jmd.2010.4.419.

[16]

A. Katok and B. Hasselblatt, "Introduction to the Modern Theory of Dynamical Systems,", Encyclopedia of Mathematics and its Applications, 54 (1995).

[17]

A. Katok, Cocycles, cohomology and combinatorial constructions in ergodic theory,, in collaboration with E. A. Robinson, 69 (2001), 107.

[18]

I. Kornfeld and M. Lin, Coboundaries of irreducible Markov operators on $C(K)$,, Israel J. of Mathematics, 97 (1997), 189. doi: 10.1007/BF02774036.

[19]

S. Lang, "Fundamentals of Differential Geometry,", Graduate Texts in Mathematics, 191 (1999). doi: 10.1007/978-1-4612-0541-8.

[20]

V. Markovic, Quasisymmetric groups,, J. Amer. Math. Soc., 19 (2006), 673. doi: 10.1090/S0894-0347-06-00518-2.

[21]

S. Marmi, P. Moussa and J.-C. Yoccoz, The cohomological equation for Roth-type interval-exchange maps,, J. Amer. Math. Soc., 18 (2005), 823. doi: 10.1090/S0894-0347-05-00490-X.

[22]

J. Moulin Ollagnier and D. Pinchon, A note about Hedlund's theorem,, in, (1977), 311.

[23]

R. McCutcheon, The Gottschalk-Hedlund Theorem,, Am. Math. Monthly, 106 (1999), 670. doi: 10.2307/2589497.

[24]

I. Namioka and E. Asplund, A geometric proof of Ryll-Nardzewski's fixed point theorem,, Bull. Amer. Math. Soc., 73 (1967), 443. doi: 10.1090/S0002-9904-1967-11779-8.

[25]

A. Navas, Three remarks on one-dimensional bi-Lipschitz conjugacies,, unpublished note, ().

[26]

A. Navas, "Groups of Circle Diffeomorphisms,", Chicago Lectures in Mathematics, (2011).

[27]

J. C. Oxtoby, "Measure and Category. A Survey of the Analogies Between Topological and Measure Spaces,", Second edition, 2 (1980).

[28]

M. Ponce, Local dynamics for fibred holomorphic transformations,, Nonlinearity, 20 (2007), 2939. doi: 10.1088/0951-7715/20/12/011.

[29]

J. Pöschel, On elliptic lower-dimensional tori in Hamiltonian systems,, Math. Z., 202 (1989), 559. doi: 10.1007/BF01221590.

[30]

A. Quas, Rigidity of continuous coboundaries,, Bull. London Math. Soc., 29 (1997), 595. doi: 10.1112/S0024609396002810.

[31]

D. Sullivan, On the ergodic theory at infinity of an arbitrary discrete group of hyperbolic motions,, in, 97 (1981), 465.

[32]

P. Tukia, On quasiconformal groups,, Journal d'Analyse Math., 46 (1986), 318. doi: 10.1007/BF02796595.

[33]

P. Walters, "An Introduction to Ergodic Theory,", Graduate Texts in Mathematics, 79 (1982).

[34]

J.-C. Yoccoz, Some questions and remarks about $SL(2,\mathbbR)$ cocycles,, in, (2004), 447.

show all references

References:
[1]

G. Atkinson, A class of transitive cylinder transformations,, J. London Math. Soc. (2), 17 (1978), 263. doi: 10.1112/jlms/s2-17.2.263.

[2]

U. Bader, T. Gelander and N. Monod, A fixed point theorem for $L^1$ spaces,, Inventiones Mathematicae, 189 (2012), 143. doi: 10.1007/s00222-011-0363-2.

[3]

U. Bader, A. Furman, T. Gelander and N. Monod, Property (T) and rigidity for actions on Banach spaces,, Acta Math., 198 (2007), 57. doi: 10.1007/s11511-007-0013-0.

[4]

R. Baire, "Leçons sur les Fonctions Discontinues,", Les Grands Classiques Gauthier-Villars, (1995).

[5]

A. Ballmann, "Lectures on Spaces of Nonpositive Curvature,", DMV Seminar, 25 (1995). doi: 10.1007/978-3-0348-9240-7.

[6]

S. Banach, "Théorie des Opérations Linéaires,", Monografie Matematyczne, 1 (1932).

[7]

M. R. Bridson and A. Haefliger, "Metric Spaces of Non-Positive Curvature,", Grundlehren der Mathematischen Wissenschaften, 319 (1999).

[8]

F. Bruhat and J. Tits, Groupes réductifs sur un corps local,, Inst. Hautes Études Sci. Publ. Math., 41 (1972), 5.

[9]

D. Coronel, A. Navas and M. Ponce, On the dynamics of non-reducible cylindrical vortices,, J. Lond. Math. Soc. (2), 85 (2012), 789. doi: 10.1112/jlms/jdr068.

[10]

W. H. Gottschalk and G. A. Hedlund, "Topological Dynamics,", American Mathematical Society Colloquium Publications, (1955).

[11]

M.-R. Herman, Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations,, Inst. Hautes Études Sci. Publ. Math., 49 (1979), 5.

[12]

M. Jerison, The space of bounded maps into a Banach space,, Annals of Math. (2), 52 (1950), 309. doi: 10.2307/1969472.

[13]

V. Kaimanovich, Double ergodicity of the Poisson boundary and applications to bounded cohomology,, Geom. and Functional Analysis (GAFA), 13 (2003), 852. doi: 10.1007/s00039-003-0433-8.

[14]

B. Kalinin, Livšic theorem for matrix cocycles,, Annals of Math. (2), 173 (2011), 1025. doi: 10.4007/annals.2011.173.2.11.

[15]

B. Kalinin and V. Sadovskaya, Linear cocycles over hyperbolic systems and criteria of conformality,, J. Mod. Dyn., 4 (2010), 419. doi: 10.3934/jmd.2010.4.419.

[16]

A. Katok and B. Hasselblatt, "Introduction to the Modern Theory of Dynamical Systems,", Encyclopedia of Mathematics and its Applications, 54 (1995).

[17]

A. Katok, Cocycles, cohomology and combinatorial constructions in ergodic theory,, in collaboration with E. A. Robinson, 69 (2001), 107.

[18]

I. Kornfeld and M. Lin, Coboundaries of irreducible Markov operators on $C(K)$,, Israel J. of Mathematics, 97 (1997), 189. doi: 10.1007/BF02774036.

[19]

S. Lang, "Fundamentals of Differential Geometry,", Graduate Texts in Mathematics, 191 (1999). doi: 10.1007/978-1-4612-0541-8.

[20]

V. Markovic, Quasisymmetric groups,, J. Amer. Math. Soc., 19 (2006), 673. doi: 10.1090/S0894-0347-06-00518-2.

[21]

S. Marmi, P. Moussa and J.-C. Yoccoz, The cohomological equation for Roth-type interval-exchange maps,, J. Amer. Math. Soc., 18 (2005), 823. doi: 10.1090/S0894-0347-05-00490-X.

[22]

J. Moulin Ollagnier and D. Pinchon, A note about Hedlund's theorem,, in, (1977), 311.

[23]

R. McCutcheon, The Gottschalk-Hedlund Theorem,, Am. Math. Monthly, 106 (1999), 670. doi: 10.2307/2589497.

[24]

I. Namioka and E. Asplund, A geometric proof of Ryll-Nardzewski's fixed point theorem,, Bull. Amer. Math. Soc., 73 (1967), 443. doi: 10.1090/S0002-9904-1967-11779-8.

[25]

A. Navas, Three remarks on one-dimensional bi-Lipschitz conjugacies,, unpublished note, ().

[26]

A. Navas, "Groups of Circle Diffeomorphisms,", Chicago Lectures in Mathematics, (2011).

[27]

J. C. Oxtoby, "Measure and Category. A Survey of the Analogies Between Topological and Measure Spaces,", Second edition, 2 (1980).

[28]

M. Ponce, Local dynamics for fibred holomorphic transformations,, Nonlinearity, 20 (2007), 2939. doi: 10.1088/0951-7715/20/12/011.

[29]

J. Pöschel, On elliptic lower-dimensional tori in Hamiltonian systems,, Math. Z., 202 (1989), 559. doi: 10.1007/BF01221590.

[30]

A. Quas, Rigidity of continuous coboundaries,, Bull. London Math. Soc., 29 (1997), 595. doi: 10.1112/S0024609396002810.

[31]

D. Sullivan, On the ergodic theory at infinity of an arbitrary discrete group of hyperbolic motions,, in, 97 (1981), 465.

[32]

P. Tukia, On quasiconformal groups,, Journal d'Analyse Math., 46 (1986), 318. doi: 10.1007/BF02796595.

[33]

P. Walters, "An Introduction to Ergodic Theory,", Graduate Texts in Mathematics, 79 (1982).

[34]

J.-C. Yoccoz, Some questions and remarks about $SL(2,\mathbbR)$ cocycles,, in, (2004), 447.

[1]

Livio Flaminio, Giovanni Forni. On the cohomological equation for nilflows. Journal of Modern Dynamics, 2007, 1 (1) : 37-60. doi: 10.3934/jmd.2007.1.37

[2]

Giovanni Forni. The cohomological equation for area-preserving flows on compact surfaces. Electronic Research Announcements, 1995, 1: 114-123.

[3]

C.P. Walkden. Solutions to the twisted cocycle equation over hyperbolic systems. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 935-946. doi: 10.3934/dcds.2000.6.935

[4]

William A. Veech. The Forni Cocycle. Journal of Modern Dynamics, 2008, 2 (3) : 375-395. doi: 10.3934/jmd.2008.2.375

[5]

Frédéric Faure. Prequantum chaos: Resonances of the prequantum cat map. Journal of Modern Dynamics, 2007, 1 (2) : 255-285. doi: 10.3934/jmd.2007.1.255

[6]

Renato Manfrin. On the boundedness of solutions of the equation $u''+(1+f(t))u=0$. Discrete & Continuous Dynamical Systems - A, 2009, 23 (3) : 991-1008. doi: 10.3934/dcds.2009.23.991

[7]

Soohyun Bae. On the elliptic equation Δu+K up = 0 in $\mathbb{R}$n. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 555-577. doi: 10.3934/dcds.2013.33.555

[8]

Kazumasa Fujiwara, Shuji Machihara, Tohru Ozawa. Remark on a semirelativistic equation in the energy space. Conference Publications, 2015, 2015 (special) : 473-478. doi: 10.3934/proc.2015.0473

[9]

Moulay-Tahar Benameur, Alan L. Carey. On the analyticity of the bivariant JLO cocycle. Electronic Research Announcements, 2009, 16: 37-43. doi: 10.3934/era.2009.16.37

[10]

Xin Li, Chunyou Sun, Na Zhang. Dynamics for a non-autonomous degenerate parabolic equation in $\mathfrak{D}_{0}^{1}(\Omega, \sigma)$. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 7063-7079. doi: 10.3934/dcds.2016108

[11]

Radjesvarane Alexandre, Yoshinori Morimoto, Seiji Ukai, Chao-Jiang Xu, Tong Yang. Bounded solutions of the Boltzmann equation in the whole space. Kinetic & Related Models, 2011, 4 (1) : 17-40. doi: 10.3934/krm.2011.4.17

[12]

Xinkuan Chai. The Boltzmann equation near Maxwellian in the whole space. Communications on Pure & Applied Analysis, 2011, 10 (2) : 435-458. doi: 10.3934/cpaa.2011.10.435

[13]

Ralf Kirsch, Sergej Rjasanow. The uniformly heated inelastic Boltzmann equation in Fourier space. Kinetic & Related Models, 2010, 3 (3) : 445-456. doi: 10.3934/krm.2010.3.445

[14]

Yonggang Zhao, Mingxin Wang. An integral equation involving Bessel potentials on half space. Communications on Pure & Applied Analysis, 2015, 14 (2) : 527-548. doi: 10.3934/cpaa.2015.14.527

[15]

M. Petcu. Euler equation in a channel in space dimension 2 and 3. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 755-778. doi: 10.3934/dcds.2005.13.755

[16]

Alexander S. Bratus, Vladimir P. Posvyanskii, Artem S. Novozhilov. A note on the replicator equation with explicit space and global regulation. Mathematical Biosciences & Engineering, 2011, 8 (3) : 659-676. doi: 10.3934/mbe.2011.8.659

[17]

Danijela Damjanović, James Tanis. Cocycle rigidity and splitting for some discrete parabolic actions. Discrete & Continuous Dynamical Systems - A, 2014, 34 (12) : 5211-5227. doi: 10.3934/dcds.2014.34.5211

[18]

Boris Kalinin, Anatole Katok and Federico Rodriguez Hertz. New progress in nonuniform measure and cocycle rigidity. Electronic Research Announcements, 2008, 15: 79-92. doi: 10.3934/era.2008.15.79

[19]

Hongyong Cui, Mirelson M. Freitas, José A. Langa. On random cocycle attractors with autonomous attraction universes. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3379-3407. doi: 10.3934/dcdsb.2017142

[20]

Kenji Nakanishi. Modified wave operators for the Hartree equation with data, image and convergence in the same space . Communications on Pure & Applied Analysis, 2002, 1 (2) : 237-252. doi: 10.3934/cpaa.2002.1.237

2016 Impact Factor: 0.706

Metrics

  • PDF downloads (1)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]