2013, 7(2): 649-661. doi: 10.3934/ipi.2013.7.649

Perfect pulse-compression coding via ARMA algorithms and unimodular transfer functions

1. 

University of Oulu, Sodankylä Geophysical Observatory, Tähteläntie 62, FI-99600 Sodankylä, Finland

Received  December 2011 Revised  March 2013 Published  May 2013

We propose a method to construct perfect pulse-compression codes with autoregressive moving average algorithms. We first show the relation between the study of coding and decoding techniques in radar engineering and the study of unimodular polynomials with constrained coefficients. Then we extend the study to unimodular Fourier series and unimodular rational functions. We use the Fourier series and rational functions as transfer functions in the autoregressive moving average algorithms. We show that by a suitable choice of the coefficients, the autoregressive moving average algorithms are realisable, stable and causal. We show examples of some almost perfect codes, i.e. numerically truncated perfect codes. We end by proposing perfect code design principles for practical radar engineering purposes.
Citation: Lassi Roininen, Markku S. Lehtinen. Perfect pulse-compression coding via ARMA algorithms and unimodular transfer functions. Inverse Problems & Imaging, 2013, 7 (2) : 649-661. doi: 10.3934/ipi.2013.7.649
References:
[1]

C. Chatfield, "The Analysis of Time Series: An Introduction, Sixth Edition,", Chapman & Hall/CRC, (2003).

[2]

B. Damtie and M. S. Lehtinen, Comparison of the performance of different radar pulse compression techniques in an incoherent scatter radar measurement,, Annales Geophysicae, 27 (2009), 797. doi: 10.5194/angeo-27-797-2009.

[3]

P. Erdős, Some unsolved problems,, Michigan Math. J., 4 (1957), 291. doi: 10.1307/mmj/1028997963.

[4]

J. P. Kahane, Sur les polynômes à coefficients unimodulaires,, Bull. London Math. Soc., 12 (1980), 321. doi: 10.1112/blms/12.5.321.

[5]

M. Lehtinen, B. Damtie, M. Orispää and P. Piiroinen, Perfect and almost perfect pulse compression codes for range spread radar targets,, Inverse Problems and Imaging, 3 (2009), 465. doi: 10.3934/ipi.2009.3.465.

[6]

N. Levanon and E. Mozeson, "Radar Signals,", Wiley-Blackwell, (2004). doi: 10.1002/0471663085.

[7]

R. Marsalek, P. Jardin and G. Baudoin, From post-distortion to pre-distortion for power amplifiers linearization,, IEEE Communications Letters, 7 (2003), 308. doi: 10.1109/LCOMM.2003.814714.

[8]

R. Nikoukar, "Near-Optimal Inversion of Incoherent Scatter Radar Measurements: Coding Schemes, Processing Techniques, and Experiments,", Ph.D. thesis, (2010).

[9]

M. B. Priestley, "Spectral Analysis and Time Series. Vol. 1.,", Academic Press, (1981).

[10]

J. X. Qiu, D. K. Abe, T. M. Antonsen, B. G. Danly and B. Levush, Linearizability of TWTAs using predistortion techniques,, IEEE Transactions on Electron Devices, 52 (2005), 718. doi: 10.1109/TED.2005.845838.

show all references

References:
[1]

C. Chatfield, "The Analysis of Time Series: An Introduction, Sixth Edition,", Chapman & Hall/CRC, (2003).

[2]

B. Damtie and M. S. Lehtinen, Comparison of the performance of different radar pulse compression techniques in an incoherent scatter radar measurement,, Annales Geophysicae, 27 (2009), 797. doi: 10.5194/angeo-27-797-2009.

[3]

P. Erdős, Some unsolved problems,, Michigan Math. J., 4 (1957), 291. doi: 10.1307/mmj/1028997963.

[4]

J. P. Kahane, Sur les polynômes à coefficients unimodulaires,, Bull. London Math. Soc., 12 (1980), 321. doi: 10.1112/blms/12.5.321.

[5]

M. Lehtinen, B. Damtie, M. Orispää and P. Piiroinen, Perfect and almost perfect pulse compression codes for range spread radar targets,, Inverse Problems and Imaging, 3 (2009), 465. doi: 10.3934/ipi.2009.3.465.

[6]

N. Levanon and E. Mozeson, "Radar Signals,", Wiley-Blackwell, (2004). doi: 10.1002/0471663085.

[7]

R. Marsalek, P. Jardin and G. Baudoin, From post-distortion to pre-distortion for power amplifiers linearization,, IEEE Communications Letters, 7 (2003), 308. doi: 10.1109/LCOMM.2003.814714.

[8]

R. Nikoukar, "Near-Optimal Inversion of Incoherent Scatter Radar Measurements: Coding Schemes, Processing Techniques, and Experiments,", Ph.D. thesis, (2010).

[9]

M. B. Priestley, "Spectral Analysis and Time Series. Vol. 1.,", Academic Press, (1981).

[10]

J. X. Qiu, D. K. Abe, T. M. Antonsen, B. G. Danly and B. Levush, Linearizability of TWTAs using predistortion techniques,, IEEE Transactions on Electron Devices, 52 (2005), 718. doi: 10.1109/TED.2005.845838.

[1]

Lassi Roininen, Markku S. Lehtinen, Petteri Piiroinen, Ilkka I. Virtanen. Perfect radar pulse compression via unimodular fourier multipliers. Inverse Problems & Imaging, 2014, 8 (3) : 831-844. doi: 10.3934/ipi.2014.8.831

[2]

Olof Heden. A survey of perfect codes. Advances in Mathematics of Communications, 2008, 2 (2) : 223-247. doi: 10.3934/amc.2008.2.223

[3]

Olof Heden. The partial order of perfect codes associated to a perfect code. Advances in Mathematics of Communications, 2007, 1 (4) : 399-412. doi: 10.3934/amc.2007.1.399

[4]

Markku Lehtinen, Baylie Damtie, Petteri Piiroinen, Mikko Orispää. Perfect and almost perfect pulse compression codes for range spread radar targets. Inverse Problems & Imaging, 2009, 3 (3) : 465-486. doi: 10.3934/ipi.2009.3.465

[5]

Matthew Bourque, T. E. S. Raghavan. Policy improvement for perfect information additive reward and additive transition stochastic games with discounted and average payoffs. Journal of Dynamics & Games, 2014, 1 (3) : 347-361. doi: 10.3934/jdg.2014.1.347

[6]

Olof Heden, Fabio Pasticci, Thomas Westerbäck. On the existence of extended perfect binary codes with trivial symmetry group. Advances in Mathematics of Communications, 2009, 3 (3) : 295-309. doi: 10.3934/amc.2009.3.295

[7]

Olof Heden, Denis S. Krotov. On the structure of non-full-rank perfect $q$-ary codes. Advances in Mathematics of Communications, 2011, 5 (2) : 149-156. doi: 10.3934/amc.2011.5.149

[8]

Helena Rifà-Pous, Josep Rifà, Lorena Ronquillo. $\mathbb{Z}_2\mathbb{Z}_4$-additive perfect codes in Steganography. Advances in Mathematics of Communications, 2011, 5 (3) : 425-433. doi: 10.3934/amc.2011.5.425

[9]

Wenjia Jing, Panagiotis E. Souganidis, Hung V. Tran. Large time average of reachable sets and Applications to Homogenization of interfaces moving with oscillatory spatio-temporal velocity. Discrete & Continuous Dynamical Systems - S, 2018, 11 (5) : 915-939. doi: 10.3934/dcdss.2018055

[10]

Simone Fiori. Auto-regressive moving-average discrete-time dynamical systems and autocorrelation functions on real-valued Riemannian matrix manifolds. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 2785-2808. doi: 10.3934/dcdsb.2014.19.2785

[11]

Susanne Pumplün. Finite nonassociative algebras obtained from skew polynomials and possible applications to (f, σ, δ)-codes. Advances in Mathematics of Communications, 2017, 11 (3) : 615-634. doi: 10.3934/amc.2017046

[12]

Somphong Jitman, Ekkasit Sangwisut. The average dimension of the Hermitian hull of constayclic codes over finite fields of square order. Advances in Mathematics of Communications, 2018, 12 (3) : 451-463. doi: 10.3934/amc.2018027

[13]

Olof Heden, Fabio Pasticci, Thomas Westerbäck. On the symmetry group of extended perfect binary codes of length $n+1$ and rank $n-\log(n+1)+2$. Advances in Mathematics of Communications, 2012, 6 (2) : 121-130. doi: 10.3934/amc.2012.6.121

[14]

Jiecheng Chen, Dashan Fan, Lijing Sun. Asymptotic estimates for unimodular Fourier multipliers on modulation spaces. Discrete & Continuous Dynamical Systems - A, 2012, 32 (2) : 467-485. doi: 10.3934/dcds.2012.32.467

[15]

Gregory S. Chirikjian. Information-theoretic inequalities on unimodular Lie groups. Journal of Geometric Mechanics, 2010, 2 (2) : 119-158. doi: 10.3934/jgm.2010.2.119

[16]

Tak Kuen Siu, Howell Tong, Hailiang Yang. Option pricing under threshold autoregressive models by threshold Esscher transform. Journal of Industrial & Management Optimization, 2006, 2 (2) : 177-197. doi: 10.3934/jimo.2006.2.177

[17]

Tomáš Roubíček. Thermodynamics of perfect plasticity. Discrete & Continuous Dynamical Systems - S, 2013, 6 (1) : 193-214. doi: 10.3934/dcdss.2013.6.193

[18]

Pavel Bachurin, Konstantin Khanin, Jens Marklof, Alexander Plakhov. Perfect retroreflectors and billiard dynamics. Journal of Modern Dynamics, 2011, 5 (1) : 33-48. doi: 10.3934/jmd.2011.5.33

[19]

Marcela Mejía, J. Urías. An asymptotically perfect pseudorandom generator. Discrete & Continuous Dynamical Systems - A, 2001, 7 (1) : 115-126. doi: 10.3934/dcds.2001.7.115

[20]

Alexander Bibov, Heikki Haario, Antti Solonen. Stabilized BFGS approximate Kalman filter. Inverse Problems & Imaging, 2015, 9 (4) : 1003-1024. doi: 10.3934/ipi.2015.9.1003

2017 Impact Factor: 1.465

Metrics

  • PDF downloads (1)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]