
Previous Article
Using fractal geometry and universal growth curves as diagnostics for comparing tumor vasculature and metabolic rate with healthy tissue and for predicting responses to drug therapies
 DCDSB Home
 This Issue
 Next Article
A continuous model of angiogenesis: Initiation, extension, and maturation of new blood vessels modulated by vascular endothelial growth factor, angiopoietins, plateletderived growth factorB, and pericytes
1.  Department of Mathematics, Central Michigan University, Mount Pleasant, MI 48859, United States 
2.  National Research Laboratory for Vascular Biology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305701, South Korea 
3.  Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, United States 
References:
[1] 
A. R. A. Anderson and M. A. J. Chaplain, Continuous and discrete mathematical models of tumorinduced angiogenesis,, Bull. Math. Biol., 60 (1998), 857. 
[2] 
A. R. A. Anderson and M. A.J . Chaplain, A mathematical model for capillary network formation in the absence of endothelial cell proliferation,, Appl. Math. Lett., 11 (1998), 109. 
[3] 
L. Arakelyan, V. Vainstein and Z. Agur, A computer algorithm describing the process of vessel formation and maturation, and its use for predicting the effects of antiangiogenic and antimaturation therapy on vascular tumor growth,, Angiogenesis, 5 (2002), 203. 
[4] 
A. Armulik, A. Abramsson and C. Betsholtz, Endothelial/pericyte interactions,, Circ. Res., 97 (2005), 512. 
[5] 
G. Ateshian, On the theory of reactive mixtures for modeling biological growth,, Biomech. Model. Mechanobiol., 6 (2007), 423. 
[6] 
H. G. Augustin, G. Y. Koh, G. Thurston and K. Alitalo, Control of vascular morphogenesis and homeostasis through the angiopoietinTie system,, Nat. Rev. Mol. Cell Biol., 10 (2009), 165. 
[7] 
D. Balding and D. L. S. McElwain, A mathematical model of tumorinduced capillary growth,, J. Theor. Biol., 114 (1985), 53. 
[8] 
K. Bartha and H. Rieger, Vascular network remodeling via vessel cooption, regression and growth in tumors,, J. Theor. Biol., 21 (2006), 903. doi: 10.1016/j.jtbi.2006.01.022. 
[9] 
A. Bauer, T. Jackson and Y. Jiang, A cellbased model exhibiting branching and anastomosis during tumorinduced angiogenesis,, Biophys. J., 92 (2007), 3105. 
[10] 
A. Bauer, T. Jackson, Y. Jiang and T. Rohlf, Receptor crosstalk in angiogenesis: mapping environmental cues to cell phenotype using a stochastic, boolean signaling network model,, J. Theor. Biol., 264 (2010), 838. 
[11] 
A. R. Bausch, F. Ziemann, A. A. Boulbitch, K. Jacobson and E. Sackmann, Local measurements of viscoelastic parameters of adherent cell surfaces by magnetic bead microrheometry,, Biophys. J., 75 (1998), 2038. 
[12] 
K. Bentley, H. Gerhardt and P. A. Bates, Agentbased simulation of notchmediated tip cell selection in angiogenic sprout initialisation,, J. Theor. Biol., 250 (2008), 25. 
[13] 
K. Bentley, G. Mariggi, H. Gerhardt and P. A. Bates, Tipping the balance: Robustness of tip cell selection, migration and fusion in angiogenesis,, PLoS Comput. Biol., 5 (2009). 
[14] 
G. Bergers and D. Hanahan, Modes of resistance to antiangiogenic therapy,, Nat. Rev. Cancer, 8 (2008), 592. 
[15] 
G. Bergers, S. Song, N. MeyerMorse, et al, Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors,, J. Clin. Invest., 111 (2003), 1287. 
[16] 
F. Billy, B. Ribba, O. Saut, et al, A pharmacologically based multiscale mathematical model of angiogenesis and its use in investigating the efficacy of a new cancer treatment strategy,, J. Theor. Biol., 260 (2009), 545. 
[17] 
M. Bjarnegard, M. Enge, J. Norlin, et al, Endotheliumspecific ablation of PDGFB leads to pericyte loss and glomerular, cardiac and placental abnormalities,, Development, 131 (2004), 1847. 
[18] 
E. Bogdanovic, V. P. Nguyen and D. J. Dumont, Activation of Tie2 by angiopoietin1 and angiopoietin2 results in their release and receptor internalization,, J. Cell Sci., 119 (2006), 3551. 
[19] 
R. M. Bowen, "Introduction to Continuum Mechanics for Engineers,'', Springer, (2007). 
[20] 
H. M. Byrne and M. A. J. Chaplain, Mathematical models for tumour angiogenesis: Numerical simulations and nonlinear wave solutions,, Bull. Math. Biol., 57 (1995), 461. 
[21] 
H. M. Byrne and M. A. J. Chaplain, Explicit solutions of a simplified model of capillary sprout growth during tumor angiogenesis,, Appl. Math. Lett., 9 (1996), 69. 
[22] 
J. Cai, O. Kehoe, G. M. Smith, et al, The angiopoietin/Tie2 system regulates pericyte survival and recruitment in diabetic retinopathy,, Invest. Ophthalmol. Vis. Sci., 49 (2008). 
[23] 
V. Capasso and D. Morale, Stochastic modelling of tumourinduced angiogenesis,, J. Math. Biol., 58 (2009), 219. doi: 10.1007/s002850080193z. 
[24] 
P. Carmeliet, Angiogenesis in life, disease and medicine,, Nature, 438 (2005), 932. 
[25] 
P. Carmeliet and R. K. Jain, Molecular mechanisms and clinical applications of angiogenesis,, Nature, 473 (2011), 298. 
[26] 
R. Carmeliet and R. K. Jain, Angiogenesis in cancer and other diseases,, Nature, 407 (2000), 249. 
[27] 
S. CébeSuarez, A. ZehnderFjällman and K. BallmerHofer, The role of VEGF receptors in angiogenesis; complex partnerships,, Cell. Mol. Life Sci., 63 (2006), 601. 
[28] 
B. Cohen, D. Barkan, Y. Levy, et al, Leptin induces angiopoietin2 expression in adipose tissues,, J. Biol. Chem., 276 (2001), 7697. 
[29] 
K. D. Costa, A. J. Sim and F. C.P. Yin, NonHertzian approach to analyzing mechanical properties of endothelial cells probed by atomic force microscopy,, J. Biomech. Eng., 128 (2006), 176. 
[30] 
S. C. Cowin, Tissue growth and remodeling,, Annu. Rev. Biomed. Eng., 6 (2004), 77. 
[31] 
S. Davis, T. H. Aldrich, P. F. Jones, et al, Isolation of angiopoietin1, a ligand for the Tie2 receptor, by secretiontrap expression cloning,, Cell, 87 (1996), 1161. 
[32] 
F. De Smet, I. Segura, K. De Bock, et al, Mechanisms of vessel branching,, Arterioscler. Thromb. Vasc. Biol., 29 (2009), 639. 
[33] 
N. Desprat, A. Richert, J. Simeon and A. Asnacios, Creep function of a single living cell,, Biophys. J., 88 (2005), 2224. 
[34] 
H. F. Dvorak, Vascular permeability factor/vascular endothelial growth factor: A critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy,, J. Clin. Oncol., 20 (2002), 4368. 
[35] 
L. M. Ellis and D. J. Hicklin, Vegftargeted therapy: Mechanisms of antitumour activity,, Nat. Rev. Cancer, 8 (2008), 579. 
[36] 
R. Erber, A. Thurnher, A. D. Katsen, et al, Combined inhibition of vegf and pdgf signaling enforces tumor vessel regression by interfering with pericytemediated endothelial cell survival mechanisms,, FASEB J., 18 (2004), 338. 
[37] 
Y. Feng, F. Vom Hagen, F. Pfister, et al, Impaired pericyte recruitment and abnormal retinal angiogenesis as a result of angiopoietin2 overexpression,, Thromb. Haemostasis, 97 (2007), 99. 
[38] 
P. Fernandez, L. Heymann, A. Ott, N. Aksel and P. A Pullarkat, Shear rheology of a cell monolayer,, New J. Phys., 9 (2007). 
[39] 
P. Fernandez and A. Ott, Single cell mechanics: Stress stiffening and kinematic hardening,, Phys. Rev. Lett., 100 (2008). 
[40] 
N. Ferrara, The role of VEGF in the regulation of physiological and pathological angiogenesis,, in, (2005), 209. 
[41] 
N. Ferrara, G. HansPeter and L. Jennifer, The biology of VEGF and its receptors,, Nat. Med., 9 (2003), 669. 
[42] 
U. Fiedler, T. Krissl, S. Koidl, et al, Angiopoietin1 and angiopoietin2 share the same binding domains in the Tie2 receptor involving the first Iglike loop and the epidermal growth factorlike repeats,, J.Biol. Chem., 278 (2003), 1721. 
[43] 
U. Fiedler, M. Scharpfenecker, S. Koidl, et al, The Tie2 ligand Angiopoietin2 is stored in and rapidly released upon stimulation from endothelial cell WeibelPalade bodies,, Blood, 103 (2004), 4150. 
[44] 
J. Folkman, Tumor angiogenesis: Therapeutic implications,, New Engl. J. Med., 285 (1971), 1182. 
[45] 
J. Folkman and R. Kalluri, Tumor angiogenesis,, in, (2003). 
[46] 
K. ForstenWilliams, C. C. Chua and M. A. Nugent, The kinetics of fgf2 binding to heparan sulfate proteoglycans and map kinase signaling,, J. Theor. Biol., 233 (2005), 483. 
[47] 
J. A. Fozard, H. M. Byrne, O. E. Jensen and J. R. King, Continuum approximations of individualbased models for epithelial monolayers,, Mathematical Medicine and Biology, 27 (2010), 39. doi: 10.1093/imammb/dqp015. 
[48] 
M. Franco, P. Roswall, E. Cortez, D. Hanahan and K. Pietras, Pericytes promote endothelial cell survival through induction of autocrine vegfa signaling and bclw expression,, Blood, 118 (2011), 2906. 
[49] 
S. Fukuhara, K. Sako, K. Noda, et al, Tie2 is tied at the cellcell contacts and to extracellular matrix by angiopoietin1,, Exp. Mol. Med., 41 (2009). 
[50] 
S. Fukuhara, K. Sako, K Noda, et al, Angiopoietin1/Tie2 receptor signaling in vascular quiescence and angiogenesis,, Histol. Histopathol., 25 (2010), 387. 
[51] 
K. Gaengel, G. Genove, A. Armulik and C. Betsholtz, Endothelialmural cell signaling in vascular development and angiogenesis,, Arterioscler. Thromb. Vasc. Biol., 29 (2009), 630. 
[52] 
A. Gamba, D. Ambrosi, A. Coniglio, et al, Percolation, morphogenesis, and burgers dynamics in blood vessels formation,, Phys. Rev. Lett., 90 (2003). 
[53] 
J. R. Gamble, J. Drew, L. Trezise, et al, Angiopoietin1 is an antipermeability and antiinflammatory agent in vitro and targets cell junctions,, Circ. Res., 87 (2000), 603. 
[54] 
K. Garikipati, The kinematics of biological growth,, Appl. Mech. Rev., 62 (2009). 
[55] 
H. Gerber, A. McMurtrey, J. Kowalski, et al, Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3'kinase/Akt signal transduction pathway. Requirement for Flk1/KDR activation,, J. Biol. Chem., 273 (1998), 30336. 
[56] 
H. Gerhardt, M. Golding, M. Fruttiger, et al, VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia,, J. Cell Biol., 161 (2003), 1163. 
[57] 
J. L. Gevertz and S. Torquato, Modeling the effects of vasculature evolution on early brain tumor growth,, J. Theor. Biol., 243 (2006), 517. doi: 10.1016/j.jtbi.2006.07.002. 
[58] 
V. Goede, T. Schmidt, S. Kimmina, D. Kozian and HG Augustin, Analysis of blood vessel maturation processes during cyclic ovarian angiogenesis,, Lab. Invest., 78 (1998). 
[59] 
H. P. Hammes, J. Lin, P. Wagner, et al, Angiopoietin2 causes pericyte dropout in the normal retina: Evidence for involvement in diabetic retinopathy,, Diabetes, 53 (2004), 1104. 
[60] 
D. Hanahan and J. Folkman, Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis,, Cell, 86 (1996), 353. 
[61] 
R. Harfouche and S. N. A. Hussain, Signaling and regulation of endothelial cell survival by angiopoietin2,, Am. J. Physiol. Heart Circ. Physiol., 291 (2006), 1635. 
[62] 
A. Hegen, S. Koidl, K. Weindel, et al, Expression of angiopoietin2 in endothelial cells is controlled by positive and negative regulatory promoter elements,, Arterioscler. Thromb. Vasc. Biol., 24 (2004), 1803. 
[63] 
M. Hellström, M. Kalén, P. Lindahl, A. Abramsson and C. Betsholtz, Role of PDGFB and PDGFRbeta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse,, Development, 126 (1999), 3047. 
[64] 
K. K. Hirschi, S. A. Rohovsky, L. H. Beck, S. R. Smith and P. A. D'Amore, Endothelial cells modulate the proliferation of mural cell precursors via plateletderived growth factorBB and heterotypic cell contact,, Circ. Res., 84 (1999), 298. 
[65] 
J. Holash, P. C. Maisonpierre, D. Compton, et al, Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF,, Science, 284 (1999), 1994. 
[66] 
M. J. Holmes and B. D. Sleeman, A mathematical model of tumour angiogenesis incorporating cellular traction and viscoelastic effects,, J. Theor. Biol., 202 (2000), 95. 
[67] 
J. Huang, J. O. Bae, J. P. Tsai, et al, Angiopoietin1/Tie2 activation contributes to vascular survival and tumor growth during VEGF blockade,, Int J Oncol, 34 (2009), 79. 
[68] 
T. L. Jackson and X. Zheng, A cellbased model of endothelial cell elongation, proliferation and maturation during corneal angiogenesis,, Bull. Math. Biol., 72 (2010), 830. doi: 10.1007/s1153800994711. 
[69] 
R. K. Jain, Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy,, Science, 307 (2005), 58. 
[70] 
C. Jang, Y. J. Koh, N. K. Lim, et al, Angiopoietin2 exocytosis is stimulated by sphingosine1phosphate in human blood and lymphatic endothelial cells,, Arterioscler. Thromb. Vasc. Biol., 29 (2009), 401. 
[71] 
N. Jo, C. Mailhos, M. Ju, et al, Inhibition of plateletderived growth factor B signaling enhances the efficacy of antivascular endothelial growth factor therapy in multiple models of ocular neovascularization,, Am. J. Pathol., 168 (2006), 2036. 
[72] 
E. Karl, K. Warner, B. Zeitlin, et al, Bcl2 acts in a proangiogenic signaling pathway through nuclear factor$\kappa$B and CXC chemokines,, Cancer Res., 65 (2005), 5063. 
[73] 
I. Kim, H. G. Kim, J. So, et al, Angiopoietin1 regulates endothelial cell survival through the phosphatidylinositol 3'Kinase/Akt signal transduction pathway,, Circ. Res., 86 (2000), 24. 
[74] 
I. Kim, J. H. Kim, Y. S. Ryu, M. Liu and G. Y. Koh, Tumor necrosis factor$\alpha$ upregulates angiopoietin2 in human umbilical vein endothelial cells,, Biochem. Biophys. Res. Commun., 269 (2000), 361. 
[75] 
K. Kim et al, Oligomerization and multimerization are critical for angiopoietin1 to bind and phosphorylate tie2,, J. Biol. Chem., 280 (2005), 20126. 
[76] 
S. Koch, S. Tugues, X. Li, L. Gualandi and L. ClaessonWelsh, Signal transduction by vascular endothelial growth factor receptors,, Biochem. J., 437 (2011), 169. 
[77] 
Y. J. Koh, H.Z. Kim, S.I. Hwang, et al, Double antiangiogenic protein, DAAP, targeting VEGFA and angiopoietins in tumor angiogenesis, metastasis, and vascular leakage,, Cancer Cell, 18 (2010), 171. 
[78] 
R. Kowalczyk, Preventing blowup in a chemotaxis model,, J. Math. Anal. Appl., 305 (2005), 566. doi: 10.1016/j.jmaa.2004.12.009. 
[79] 
K. Larripa and A. Mogilner, Transport of a 1D viscoelastic actinmyosin strip of gel as a model of a crawling cell,, Physica A, 372 (2006), 113. 
[80] 
H. A. Levine and M. NilsenHamilton, Angiogenesis  A biochemial/mathematical perspective,, in, (2006). doi: 10.1007/11561606_2. 
[81] 
H. A. Levine, S. Pamuk, B. D. Sleeman and M. NilsenHamilton, Mathematical modeling of capillary formation and development in tumor angiogenesis: Penetration into the stroma,, Bull. Math. Biol., 63 (2001), 801. 
[82] 
H. A. Levine, B. D. Sleeman and M. NilsenHamilton, A mathematical model for the roles of pericytes and macrophages in the initiation of angiogenesis. I. the role of protease inhibitors in preventing angiogenesis,, Math. Biosci., 168 (2000), 77. doi: 10.1016/S00255564(00)000341. 
[83] 
F. Li and X. Zheng, Singularity analysis of a reactiondiffusion equation with a solutiondependent dirac delta source,, Appl. Math. Lett., 25 (2012), 2179. 
[84] 
G. Liu, A. Qutub, P. Vempati, F. Mac Gabhann and A. Popel, Modulebased multiscale simulation of angiogenesis in skeletal muscle,, Theor. Biol. Med. Model., 8 (2011). 
[85] 
I. B. Lobov, P. C. Brooks and R. A. Lang, Angiopoietin2 displays VEGFdependent modulation of capillary structure and endothelial cell survival in vivo,, PNAS, 99 (2002), 11205. 
[86] 
N. R. London, K. J. Whitehead and D. Y. Li, Endogenous endothelial cell signaling systems maintain vascular stability,, Angiogenesis, 12 (2009), 149. 
[87] 
B. Loret and F. M. F. Simes, A framework for deformation, generalized diffusion, mass transfer and growth in multispecies multiphase biological tissues,, Eur. J. Mech. ASolid, 24 (2005), 757. doi: 10.1016/j.euromechsol.2005.05.005. 
[88] 
C. Lu, A. A. Kamat, Y. G. Lin, et al, Dual targeting of endothelial cells and pericytes in antivascular therapy for ovarian carcinoma,, Clin. Cancer Res., 13 (2007), 4209. 
[89] 
C. Lu, P. H. Thaker, Y. G. Lin, et al, Impact of vessel maturation on antiangiogenic therapy in ovarian cancer,, Am. J. Obstet. Gynecol., 198 (2008). 
[90] 
R. Mabry, D. G Gilbertson, A. Frank, et al, A dualtargeting pdgfrbeta/vegfa molecule assembled from stable antibody fragments demonstrates antiangiogenic activity in vitro and in vivo,, mAbs, 2 (2010), 20. 
[91] 
F. Mac Gabhann and A. S. Popel, Model of competitive binding of vascular endothelial growth factor and placental growth factor to VEGF receptors on endothelial cells,, Am. J. Physiol. Heart Circ. Physiol., 286 (2004), 153. 
[92] 
F. Mac Gabhann and A. S. Popel, Targeting neuropilin1 to inhibit vegf signaling in cancer: Comparison of therapeutic approaches,, PLoS Comput. Biol., 2 (2006). 
[93] 
F. Mac Gabhann and A. S. Popel, Dimerization of VEGF receptors and implications for signal transduction: A computational study,, Biophys. Chem., 128 (2007), 125. 
[94] 
P. C. Maisonpierre, C. Suri, P. F. Jones, et al, Angiopoietin2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis,, Science, 277 (1997), 55. 
[95] 
S. J. Mandriota and M. S. Pepper, Regulation of angiopoietin2 mRNA levels in bovine microvascular endothelial cells by cytokines and hypoxia,, Circ. Res., 83 (1998), 852. 
[96] 
D. Manoussaki, A mechanochemical model of angiogenesis and vasculogenesis,, ESAIM: Mathematical Modelling and Numerical Analysis, 37 (2003), 581. doi: 10.1051/m2an:2003046. 
[97] 
N. Mantzaris, S. Webb and H. G. Othmer, Mathematical modeling of tumorinduced angiogenesis,, J. Math Biol., 49 (2004), 111. doi: 10.1007/s0028500302622. 
[98] 
K. Matsushita, M. Yamakuchi, C. N. Morrell, et al, Vascular endothelial growth factor regulation of WeibelPaladebody exocytosis,, Blood, 105 (2005). 
[99] 
S. R. McDougall, A. R. A. Anderson and M. A. J. Chaplain, Mathematical modelling of dynamic adaptive tumourinduced angiogenesis: Clinical implications and therapeutic targeting strategies,, J. Theor. Biol., 241 (2006), 564. doi: 10.1016/j.jtbi.2005.12.022. 
[100] 
S. R. McDougall, M. A. J. Chaplain, A. Stéphanou and A. R. A. Anderson, Modelling the impact of pericyte migration and coverage of vessels on the efficacy of vascular disrupting agents,, Math. Model. Nat. Phenom., 5 (2010), 163. doi: 10.1051/mmnp/20105108. 
[101] 
Q. Mi, D. Swigon, et al, Onedimensional elastic continuum model of enterocyte layer migration,, Biophys. J., 93 (2007), 3745. 
[102] 
F. Milde, M. Bergdorf and P. Koumoutsakos, A hybrid model for threedimensional simulations of sprouting angiogenesis,, Biophys. J., 95 (2008), 3146. 
[103] 
R. Muñoz Chápuli, A. R. Quesada and M. Ángel Medina, Angiogenesis and signal transduction in endothelial cells,, Cell. Mol. Life Sci., 61 (2004), 2224. 
[104] 
G. N. Naumov, E. Bender, Zurakowski, et al, A model of human tumor dormancy: An angiogenic switch from the nonangiogenic phenotype,, J. Natl. Cancer Inst., 98 (2006), 316. 
[105] 
J. Nor and P. Polverini, Role of endothelial cell survival and death signals in angiogenesis,, Angiogenesis, 3 (1999), 101. 
[106] 
H. Oh, H. Takagi, K. Suzuma, et al, Hypoxia and vascular endothelial growth factor selectively upregulate angiopoietin2 in bovine microvascular endothelial cells,, J. Biol. Chem., 274 (1999), 15732. 
[107] 
J. Oliner et al, Suppression of angiogenesis and tumor growth by selective inhibition of angiopoietin2,, Cancer Cell, 6 (2004), 507. 
[108] 
M. R. Owen, T. Alarcon, P. K. Maini and H. M. Byrne, Angiogenesis and vascular remodelling in normal and cancerous tissues,, J. Theor. Biol., 58 (2009), 689. doi: 10.1007/s002850080213z. 
[109] 
S. M. Parikh, T. Mammoto, A. Schultz, et al, Excess circulating angiopoietin2 may contribute to pulmonary vascular leak in sepsis in humans,, PLoS Med., 3 (2006). 
[110] 
S. M. Peirce, Computational and mathematical modeling of angiogenesis,, Microcirculation, 15 (2008), 739. 
[111] 
S. M. Peirce, E. J. Van Gieson and T. C. Skalak, Multicellular simulation predicts microvascular patterning and in silico tissue assembly,, FASEB J., 18 (2004), 731. 
[112] 
K. Pietras and D. Hanahan, A multitargeted, metronomic, and maximumtolerated dose chemoswitch regimen is antiangiogenic, producing objective responses and survival benefit in a mouse model of cancer,, J. Clin. Oncol., 23 (2005), 939. 
[113] 
M. J. Plank and B. D. Sleeman, A reinforced random walk model of tumor angiogenesis and antiangiogenesis strategies,, IMA J. Math. Med. Biol., 20 (2003), 135. 
[114] 
M. J. Plank and B. D. Sleeman, Lattice and nonlattice models of tumour angiogenesis,, Bull. Math. Biol., 66 (2004), 1785. doi: 10.1016/j.bulm.2004.04.001. 
[115] 
M. J. Plank, B. D. Sleeman and P. F. Jones, A mathematical model of tumour angiogenesis, regulated by vascular endothelial growth factor and the angiopoietins,, J. Theor. Biol., 229 (2004), 435. doi: 10.1016/j.jtbi.2004.04.012. 
[116] 
M. Prass, K. Jacobson, A. Mogilner and M. Radmacher, Direct measurement of the lamellipodial protrusive force in a migrating cell,, J. Cell Biol., 174 (2006), 767. 
[117] 
A. A. Qutub, F. Mac Gabhann, E. D. Karagiannis, P. Vempati and A. S. Popel, Multiscale models of angiogenesis,, IEEE Eng. Med. Biol. Mag., 28 (2009), 14. 
[118] 
A. A. Qutub and A. Popel, Elongation, proliferation $&$ migration differentiate endothelial cell phenotypes and determine capillary sprouting,, BMC Syst. Biol., 3 (2009). 
[119] 
A. Ramasubramanian and L. Taber, Computational modeling of morphogenesis regulated by mechanical feedback,, Biomech. Model. Mechanobiol., 7 (2008), 77. 
[120] 
A. Raza, M. J. Franklin and A. Z. Dudek, Pericytes and vessel maturation during tumor angiogenesis and metastasis,, Am. J. Hematol., 85 (2010), 593. 
[121] 
Y. Reiss, J. Droste, M. Heil, et al, Angiopoietin2 impairs revascularization after limb ischemia,, Circ. Res., 101 (2007), 88. 
[122] 
E. K. Rodriguez, A. Hoger and A. D. McCulloch, Stressdependent finite growth in soft elastic tissues,, J. Biomech., 27 (1994), 455. 
[123] 
P. Saharinen, L. Eklund, J. Miettinen, et al, Angiopoietins assemble distinct Tie2 signalling complexes in endothelial cellcell and cellmatrix contacts,, Nat. Cell Biol., 10 (2008), 527. 
[124] 
R.C. Schugart, A. Friedman, R. Zhao and C. K. Sen, Wound angiogenesis as a function of tissue oxygen tension: A mathematical model,, PNAS, 105 (2008), 2628. 
[125] 
C. E. Semino, R. D. Kamm and D. A. Lauffenburger, Autocrine EGF receptor activation mediates endothelial cell migration and vascular morphogenesis induced by VEGF under interstitial flow,, Exp. Cell Res., 312 (2006), 289. 
[126] 
G. Serini, D. Ambrosi, E. Giraudo, et al, Modeling the early stages of vascular network assembly,, EMBO J., 22 (2003), 1771. 
[127] 
C. Sfiligoi, A. de Luca, I. Cascone, et al, Angiopoietin2 expression in breast cancer correlates with lymph node invasion and short survival,, Int. J. Cancer, 103 (2003), 466. 
[128] 
J. Shen et al, An antibody directed against pdgf receptor enhances the antitumor and the antiangiogenic activities of an antivegf receptor 2 antibody,, Biochem. Biophys. Res. Commun., 357 (2007), 1142. 
[129] 
J. A. Sherratt and J. D. Murrat, Models of epidermal wound healing,, Proc. R. Soc. Lond. B., 241 (1990), 29. 
[130] 
M. M. Sholley, G. P. Ferguson, H. R. Seibel, et al, Mechanisms of neovascularization. Vascular sprouting can occur without proliferation of endothelial cells,, Lab. Invest., 51 (1984), 624. 
[131] 
B. D. Sleeman and I. P. Wallis, Tumour induced angiogenesis as a reinforced random walk: modeling capillary network formation without endothelial cell proliferation,, Math. Comput. Model., 36 (2002), 339. doi: 10.1016/S08957177(02)001292. 
[132] 
A. Stephanou, S. R. McDougall, A. R. A. Anderson and M. A. J. Chaplain, Mathematical modelling of the influence of blood rheological properties upon adaptative tumourinduced angiogenesis,, J. Theor. Biol., 44 (2006), 96. doi: 10.1016/j.mcm.2004.07.021. 
[133] 
C. L. Stokes and D. A. Lauffenburger, Analysis of the roles of microvessel endothelial cell random mobility and chemotaxis in angiogenesis,, J. Ther. Biol., 152 (1991), 377. 
[134] 
S. Sun, M. F. Wheeler, M. Obeyesekere and C. Patrick, A deterministic model of growth factorinduced angiogenesis,, Bull. Math. Biol., 67 (2005), 313. doi: 10.1016/j.bulm.2004.07.004. 
[135] 
C. Sundberg, M. Kowanetz, L.F. Brown, M. Detmar and H. F. Dvorak, Stable expression of angiopoietin1 and other markers by cultured pericytes: Phenotypic similarities to a subpopulation of cells in maturing vessels during later stages of angiogenesis in vivo,, Lab. Invest., 82 (2002), 387. 
[136] 
C. Suri, P. F. Jones, S. Patan, et al, Requisite role of angiopoietin1, a ligand for the Tie2 receptor, during embryonic angiogenesis,, Cell, 87 (1996), 1171. 
[137] 
A. Szabo, E. D. Perryn and A. Czirok, Network formation of tissue cells via preferential attraction to elongated structures,, Phys. Rev. Lett., 98 (2007). 
[138] 
D. Szczerba, H. Kurz and G. Szekely, A computational model of intussusceptive microvascular growth and remodeling,, J. Theor. Biol., 261 (2009), 570. 
[139] 
C. R. Tait and P. F. Jones, Angiopoietins in tumours: the angiogenic switch,, J. Pathol., 204 (2004), 1. 
[140] 
K. TeichertKuliszewska, P. C. Maisonpierre, N. Jones, et al, Biological action of angiopoietin2 in a fibrin matrix model of angiogenesis is associated with activation of Tie2,, Cardiovasc. Res., 49 (2001), 659. 
[141] 
L. J. Thompson, F. Wang, A. D. Proia, et al, Proteome analysis of the rat cornea during angiogenesis,, Proteomics, 3 (2003), 2258. 
[142] 
O. Thoumine and A. Ott, Time scale dependent viscoelastic and contractile regimes in fibroblasts probed by microplate manipulation,, J. Cell Sci., 110 (1997), 2109. 
[143] 
G. Thurston, J. S. Rudge, E. Ioffe, et al, Angiopoietin1 protects the adult vasculature against plasma leakage,, Nat. Med., 6 (2000), 460. 
[144] 
G. Thurston, C. Suri, K. Smith, et al, Leakageresistant blood vessels in mice transgenically overexpressing angiopoietin 2,, Science, 286 (1999), 2511. 
[145] 
S. Tong and F. Yuan, Numerical simulations of angiogenesis in the cornea,, Microvasc. Res., 61 (2001), 14. 
[146] 
R. D. M. Travasso, E. Corvera Poir, M. Castro, et al, Tumor angiogenesis and vascular patterning: A mathematical model,, PLoS ONE, 6 (2011). 
[147] 
R. Tyson, L. G. Stern and R. J. LeVeque, Fractional step methods applied to a chemotaxis model,, J. Math. Biol., 41 (2000), 455. doi: 10.1007/s002850000038. 
[148] 
K. Y. Volokh, Stresses in growing soft tissues,, Acta Biomater., 2 (2006), 493. 
[149] 
S. Wakui, K. Yokoo, T. Muto, et al, Localization of Ang1, 2, Tie2, and VEGF expression at endothelialpericyte interdigitation in rat angiogenesis,, Lab. Invest., 86 (2006), 1172. 
[150] 
R. Wcislo, W. Dzwinel, D. Yuen and A. Dudek, A 3D model of tumor progression based on complex automata driven by particle dynamics,, J. Mol. Model., 15 (2009), 1517. 
[151] 
M. Welter, K. Bartha and H. Rieger, Vascular remodelling of an arteriovenous blood vessel network during solid tumour growth,, J. Theor. Biol., 259 (2009), 405. 
[152] 
R. R. White, S. Shan, C. P. Rusconi, et al, Inhibition of rat corneal angiogenesis by a nucleaseresistant RNA aptamer specific for angiopoietin2,, PNAS, 100 (2003), 5028. 
[153] 
J. L. WilkinsonBerka, S. Babic, T. de Gooyer, et al, Inhibition of plateletderived growth factor promotes pericyte loss and angiogenesis in ischemic retinopathy,, Am. J. Pathol., 164 (2004), 1263. 
[154] 
J. Wu, Q. Long, Xu S. and A. R. Padhani, Study of tumor blood perfusion and its variation due to vascular normalization by antiangiogenic therapy based on 3d angiogenic microvasculature,, J. Biomech., 42 (2009), 712. 
[155] 
C. Xue, A. Friedman and C. K. Sen, A mathematical model of ischemic cutaneous wounds,, PNAS, 106 (2009), 16782. 
[156] 
S. Yang and T. Saif, Reversible and repeatable linear local cell force response under large stretches,, Exp. Cell Res., 305 (2005), 42. 
[157] 
H. T. Yuan, E. V. Khankin, S. A. Karumanchi and S. M. Parikh, Angiopoietin 2 is a partial agonist/antagonist of Tie2 signaling in the endothelium,, Mol. Cell. Biol., 29 (2009), 2011. 
[158] 
H. T. Yuan, P. G. Tipping, X. Z. Li, D. A. Long and A. S. Woolf, Angiopoietin correlates with glomerular capillary loss in antiglomerular basement membrane glomerulonephritis,, Kidney Int., 61 (2002), 2078. 
[159] 
L. Zhang, N. Yang, J. Park, et al, Tumorderived vascular endothelial growth factor upregulates angiopoietin2 in host endothelium and destabilizes host vasculature, supporting angiogenesis in ovarian cancer,, Cancer Res., 63 (2003), 3403. 
[160] 
X. Zheng, Y. Kim, L. Rakesh and E.B. Lin, A conservative multiresolution finite volume method for reaction and diffusion in angiogenesis,, Submitted., (). 
[161] 
X. Zheng, S. Wise and V. Cristini, Nonlinear simulation of tumor necrosis, neovascularization and tissue invasion via an adaptive finiteelement/levelset method,, Bull. Math. Biol., 67 (2005), 211. doi: 10.1016/j.bulm.2004.08.001. 
[162] 
X. Zheng and C. Xie, A viscoelastic model of blood capillary extension and regression: Derivation, analysis, and simulation,, J. Math. Biol., (2012). doi: 10.1007/s0028501206248. 
show all references
References:
[1] 
A. R. A. Anderson and M. A. J. Chaplain, Continuous and discrete mathematical models of tumorinduced angiogenesis,, Bull. Math. Biol., 60 (1998), 857. 
[2] 
A. R. A. Anderson and M. A.J . Chaplain, A mathematical model for capillary network formation in the absence of endothelial cell proliferation,, Appl. Math. Lett., 11 (1998), 109. 
[3] 
L. Arakelyan, V. Vainstein and Z. Agur, A computer algorithm describing the process of vessel formation and maturation, and its use for predicting the effects of antiangiogenic and antimaturation therapy on vascular tumor growth,, Angiogenesis, 5 (2002), 203. 
[4] 
A. Armulik, A. Abramsson and C. Betsholtz, Endothelial/pericyte interactions,, Circ. Res., 97 (2005), 512. 
[5] 
G. Ateshian, On the theory of reactive mixtures for modeling biological growth,, Biomech. Model. Mechanobiol., 6 (2007), 423. 
[6] 
H. G. Augustin, G. Y. Koh, G. Thurston and K. Alitalo, Control of vascular morphogenesis and homeostasis through the angiopoietinTie system,, Nat. Rev. Mol. Cell Biol., 10 (2009), 165. 
[7] 
D. Balding and D. L. S. McElwain, A mathematical model of tumorinduced capillary growth,, J. Theor. Biol., 114 (1985), 53. 
[8] 
K. Bartha and H. Rieger, Vascular network remodeling via vessel cooption, regression and growth in tumors,, J. Theor. Biol., 21 (2006), 903. doi: 10.1016/j.jtbi.2006.01.022. 
[9] 
A. Bauer, T. Jackson and Y. Jiang, A cellbased model exhibiting branching and anastomosis during tumorinduced angiogenesis,, Biophys. J., 92 (2007), 3105. 
[10] 
A. Bauer, T. Jackson, Y. Jiang and T. Rohlf, Receptor crosstalk in angiogenesis: mapping environmental cues to cell phenotype using a stochastic, boolean signaling network model,, J. Theor. Biol., 264 (2010), 838. 
[11] 
A. R. Bausch, F. Ziemann, A. A. Boulbitch, K. Jacobson and E. Sackmann, Local measurements of viscoelastic parameters of adherent cell surfaces by magnetic bead microrheometry,, Biophys. J., 75 (1998), 2038. 
[12] 
K. Bentley, H. Gerhardt and P. A. Bates, Agentbased simulation of notchmediated tip cell selection in angiogenic sprout initialisation,, J. Theor. Biol., 250 (2008), 25. 
[13] 
K. Bentley, G. Mariggi, H. Gerhardt and P. A. Bates, Tipping the balance: Robustness of tip cell selection, migration and fusion in angiogenesis,, PLoS Comput. Biol., 5 (2009). 
[14] 
G. Bergers and D. Hanahan, Modes of resistance to antiangiogenic therapy,, Nat. Rev. Cancer, 8 (2008), 592. 
[15] 
G. Bergers, S. Song, N. MeyerMorse, et al, Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors,, J. Clin. Invest., 111 (2003), 1287. 
[16] 
F. Billy, B. Ribba, O. Saut, et al, A pharmacologically based multiscale mathematical model of angiogenesis and its use in investigating the efficacy of a new cancer treatment strategy,, J. Theor. Biol., 260 (2009), 545. 
[17] 
M. Bjarnegard, M. Enge, J. Norlin, et al, Endotheliumspecific ablation of PDGFB leads to pericyte loss and glomerular, cardiac and placental abnormalities,, Development, 131 (2004), 1847. 
[18] 
E. Bogdanovic, V. P. Nguyen and D. J. Dumont, Activation of Tie2 by angiopoietin1 and angiopoietin2 results in their release and receptor internalization,, J. Cell Sci., 119 (2006), 3551. 
[19] 
R. M. Bowen, "Introduction to Continuum Mechanics for Engineers,'', Springer, (2007). 
[20] 
H. M. Byrne and M. A. J. Chaplain, Mathematical models for tumour angiogenesis: Numerical simulations and nonlinear wave solutions,, Bull. Math. Biol., 57 (1995), 461. 
[21] 
H. M. Byrne and M. A. J. Chaplain, Explicit solutions of a simplified model of capillary sprout growth during tumor angiogenesis,, Appl. Math. Lett., 9 (1996), 69. 
[22] 
J. Cai, O. Kehoe, G. M. Smith, et al, The angiopoietin/Tie2 system regulates pericyte survival and recruitment in diabetic retinopathy,, Invest. Ophthalmol. Vis. Sci., 49 (2008). 
[23] 
V. Capasso and D. Morale, Stochastic modelling of tumourinduced angiogenesis,, J. Math. Biol., 58 (2009), 219. doi: 10.1007/s002850080193z. 
[24] 
P. Carmeliet, Angiogenesis in life, disease and medicine,, Nature, 438 (2005), 932. 
[25] 
P. Carmeliet and R. K. Jain, Molecular mechanisms and clinical applications of angiogenesis,, Nature, 473 (2011), 298. 
[26] 
R. Carmeliet and R. K. Jain, Angiogenesis in cancer and other diseases,, Nature, 407 (2000), 249. 
[27] 
S. CébeSuarez, A. ZehnderFjällman and K. BallmerHofer, The role of VEGF receptors in angiogenesis; complex partnerships,, Cell. Mol. Life Sci., 63 (2006), 601. 
[28] 
B. Cohen, D. Barkan, Y. Levy, et al, Leptin induces angiopoietin2 expression in adipose tissues,, J. Biol. Chem., 276 (2001), 7697. 
[29] 
K. D. Costa, A. J. Sim and F. C.P. Yin, NonHertzian approach to analyzing mechanical properties of endothelial cells probed by atomic force microscopy,, J. Biomech. Eng., 128 (2006), 176. 
[30] 
S. C. Cowin, Tissue growth and remodeling,, Annu. Rev. Biomed. Eng., 6 (2004), 77. 
[31] 
S. Davis, T. H. Aldrich, P. F. Jones, et al, Isolation of angiopoietin1, a ligand for the Tie2 receptor, by secretiontrap expression cloning,, Cell, 87 (1996), 1161. 
[32] 
F. De Smet, I. Segura, K. De Bock, et al, Mechanisms of vessel branching,, Arterioscler. Thromb. Vasc. Biol., 29 (2009), 639. 
[33] 
N. Desprat, A. Richert, J. Simeon and A. Asnacios, Creep function of a single living cell,, Biophys. J., 88 (2005), 2224. 
[34] 
H. F. Dvorak, Vascular permeability factor/vascular endothelial growth factor: A critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy,, J. Clin. Oncol., 20 (2002), 4368. 
[35] 
L. M. Ellis and D. J. Hicklin, Vegftargeted therapy: Mechanisms of antitumour activity,, Nat. Rev. Cancer, 8 (2008), 579. 
[36] 
R. Erber, A. Thurnher, A. D. Katsen, et al, Combined inhibition of vegf and pdgf signaling enforces tumor vessel regression by interfering with pericytemediated endothelial cell survival mechanisms,, FASEB J., 18 (2004), 338. 
[37] 
Y. Feng, F. Vom Hagen, F. Pfister, et al, Impaired pericyte recruitment and abnormal retinal angiogenesis as a result of angiopoietin2 overexpression,, Thromb. Haemostasis, 97 (2007), 99. 
[38] 
P. Fernandez, L. Heymann, A. Ott, N. Aksel and P. A Pullarkat, Shear rheology of a cell monolayer,, New J. Phys., 9 (2007). 
[39] 
P. Fernandez and A. Ott, Single cell mechanics: Stress stiffening and kinematic hardening,, Phys. Rev. Lett., 100 (2008). 
[40] 
N. Ferrara, The role of VEGF in the regulation of physiological and pathological angiogenesis,, in, (2005), 209. 
[41] 
N. Ferrara, G. HansPeter and L. Jennifer, The biology of VEGF and its receptors,, Nat. Med., 9 (2003), 669. 
[42] 
U. Fiedler, T. Krissl, S. Koidl, et al, Angiopoietin1 and angiopoietin2 share the same binding domains in the Tie2 receptor involving the first Iglike loop and the epidermal growth factorlike repeats,, J.Biol. Chem., 278 (2003), 1721. 
[43] 
U. Fiedler, M. Scharpfenecker, S. Koidl, et al, The Tie2 ligand Angiopoietin2 is stored in and rapidly released upon stimulation from endothelial cell WeibelPalade bodies,, Blood, 103 (2004), 4150. 
[44] 
J. Folkman, Tumor angiogenesis: Therapeutic implications,, New Engl. J. Med., 285 (1971), 1182. 
[45] 
J. Folkman and R. Kalluri, Tumor angiogenesis,, in, (2003). 
[46] 
K. ForstenWilliams, C. C. Chua and M. A. Nugent, The kinetics of fgf2 binding to heparan sulfate proteoglycans and map kinase signaling,, J. Theor. Biol., 233 (2005), 483. 
[47] 
J. A. Fozard, H. M. Byrne, O. E. Jensen and J. R. King, Continuum approximations of individualbased models for epithelial monolayers,, Mathematical Medicine and Biology, 27 (2010), 39. doi: 10.1093/imammb/dqp015. 
[48] 
M. Franco, P. Roswall, E. Cortez, D. Hanahan and K. Pietras, Pericytes promote endothelial cell survival through induction of autocrine vegfa signaling and bclw expression,, Blood, 118 (2011), 2906. 
[49] 
S. Fukuhara, K. Sako, K. Noda, et al, Tie2 is tied at the cellcell contacts and to extracellular matrix by angiopoietin1,, Exp. Mol. Med., 41 (2009). 
[50] 
S. Fukuhara, K. Sako, K Noda, et al, Angiopoietin1/Tie2 receptor signaling in vascular quiescence and angiogenesis,, Histol. Histopathol., 25 (2010), 387. 
[51] 
K. Gaengel, G. Genove, A. Armulik and C. Betsholtz, Endothelialmural cell signaling in vascular development and angiogenesis,, Arterioscler. Thromb. Vasc. Biol., 29 (2009), 630. 
[52] 
A. Gamba, D. Ambrosi, A. Coniglio, et al, Percolation, morphogenesis, and burgers dynamics in blood vessels formation,, Phys. Rev. Lett., 90 (2003). 
[53] 
J. R. Gamble, J. Drew, L. Trezise, et al, Angiopoietin1 is an antipermeability and antiinflammatory agent in vitro and targets cell junctions,, Circ. Res., 87 (2000), 603. 
[54] 
K. Garikipati, The kinematics of biological growth,, Appl. Mech. Rev., 62 (2009). 
[55] 
H. Gerber, A. McMurtrey, J. Kowalski, et al, Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3'kinase/Akt signal transduction pathway. Requirement for Flk1/KDR activation,, J. Biol. Chem., 273 (1998), 30336. 
[56] 
H. Gerhardt, M. Golding, M. Fruttiger, et al, VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia,, J. Cell Biol., 161 (2003), 1163. 
[57] 
J. L. Gevertz and S. Torquato, Modeling the effects of vasculature evolution on early brain tumor growth,, J. Theor. Biol., 243 (2006), 517. doi: 10.1016/j.jtbi.2006.07.002. 
[58] 
V. Goede, T. Schmidt, S. Kimmina, D. Kozian and HG Augustin, Analysis of blood vessel maturation processes during cyclic ovarian angiogenesis,, Lab. Invest., 78 (1998). 
[59] 
H. P. Hammes, J. Lin, P. Wagner, et al, Angiopoietin2 causes pericyte dropout in the normal retina: Evidence for involvement in diabetic retinopathy,, Diabetes, 53 (2004), 1104. 
[60] 
D. Hanahan and J. Folkman, Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis,, Cell, 86 (1996), 353. 
[61] 
R. Harfouche and S. N. A. Hussain, Signaling and regulation of endothelial cell survival by angiopoietin2,, Am. J. Physiol. Heart Circ. Physiol., 291 (2006), 1635. 
[62] 
A. Hegen, S. Koidl, K. Weindel, et al, Expression of angiopoietin2 in endothelial cells is controlled by positive and negative regulatory promoter elements,, Arterioscler. Thromb. Vasc. Biol., 24 (2004), 1803. 
[63] 
M. Hellström, M. Kalén, P. Lindahl, A. Abramsson and C. Betsholtz, Role of PDGFB and PDGFRbeta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse,, Development, 126 (1999), 3047. 
[64] 
K. K. Hirschi, S. A. Rohovsky, L. H. Beck, S. R. Smith and P. A. D'Amore, Endothelial cells modulate the proliferation of mural cell precursors via plateletderived growth factorBB and heterotypic cell contact,, Circ. Res., 84 (1999), 298. 
[65] 
J. Holash, P. C. Maisonpierre, D. Compton, et al, Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF,, Science, 284 (1999), 1994. 
[66] 
M. J. Holmes and B. D. Sleeman, A mathematical model of tumour angiogenesis incorporating cellular traction and viscoelastic effects,, J. Theor. Biol., 202 (2000), 95. 
[67] 
J. Huang, J. O. Bae, J. P. Tsai, et al, Angiopoietin1/Tie2 activation contributes to vascular survival and tumor growth during VEGF blockade,, Int J Oncol, 34 (2009), 79. 
[68] 
T. L. Jackson and X. Zheng, A cellbased model of endothelial cell elongation, proliferation and maturation during corneal angiogenesis,, Bull. Math. Biol., 72 (2010), 830. doi: 10.1007/s1153800994711. 
[69] 
R. K. Jain, Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy,, Science, 307 (2005), 58. 
[70] 
C. Jang, Y. J. Koh, N. K. Lim, et al, Angiopoietin2 exocytosis is stimulated by sphingosine1phosphate in human blood and lymphatic endothelial cells,, Arterioscler. Thromb. Vasc. Biol., 29 (2009), 401. 
[71] 
N. Jo, C. Mailhos, M. Ju, et al, Inhibition of plateletderived growth factor B signaling enhances the efficacy of antivascular endothelial growth factor therapy in multiple models of ocular neovascularization,, Am. J. Pathol., 168 (2006), 2036. 
[72] 
E. Karl, K. Warner, B. Zeitlin, et al, Bcl2 acts in a proangiogenic signaling pathway through nuclear factor$\kappa$B and CXC chemokines,, Cancer Res., 65 (2005), 5063. 
[73] 
I. Kim, H. G. Kim, J. So, et al, Angiopoietin1 regulates endothelial cell survival through the phosphatidylinositol 3'Kinase/Akt signal transduction pathway,, Circ. Res., 86 (2000), 24. 
[74] 
I. Kim, J. H. Kim, Y. S. Ryu, M. Liu and G. Y. Koh, Tumor necrosis factor$\alpha$ upregulates angiopoietin2 in human umbilical vein endothelial cells,, Biochem. Biophys. Res. Commun., 269 (2000), 361. 
[75] 
K. Kim et al, Oligomerization and multimerization are critical for angiopoietin1 to bind and phosphorylate tie2,, J. Biol. Chem., 280 (2005), 20126. 
[76] 
S. Koch, S. Tugues, X. Li, L. Gualandi and L. ClaessonWelsh, Signal transduction by vascular endothelial growth factor receptors,, Biochem. J., 437 (2011), 169. 
[77] 
Y. J. Koh, H.Z. Kim, S.I. Hwang, et al, Double antiangiogenic protein, DAAP, targeting VEGFA and angiopoietins in tumor angiogenesis, metastasis, and vascular leakage,, Cancer Cell, 18 (2010), 171. 
[78] 
R. Kowalczyk, Preventing blowup in a chemotaxis model,, J. Math. Anal. Appl., 305 (2005), 566. doi: 10.1016/j.jmaa.2004.12.009. 
[79] 
K. Larripa and A. Mogilner, Transport of a 1D viscoelastic actinmyosin strip of gel as a model of a crawling cell,, Physica A, 372 (2006), 113. 
[80] 
H. A. Levine and M. NilsenHamilton, Angiogenesis  A biochemial/mathematical perspective,, in, (2006). doi: 10.1007/11561606_2. 
[81] 
H. A. Levine, S. Pamuk, B. D. Sleeman and M. NilsenHamilton, Mathematical modeling of capillary formation and development in tumor angiogenesis: Penetration into the stroma,, Bull. Math. Biol., 63 (2001), 801. 
[82] 
H. A. Levine, B. D. Sleeman and M. NilsenHamilton, A mathematical model for the roles of pericytes and macrophages in the initiation of angiogenesis. I. the role of protease inhibitors in preventing angiogenesis,, Math. Biosci., 168 (2000), 77. doi: 10.1016/S00255564(00)000341. 
[83] 
F. Li and X. Zheng, Singularity analysis of a reactiondiffusion equation with a solutiondependent dirac delta source,, Appl. Math. Lett., 25 (2012), 2179. 
[84] 
G. Liu, A. Qutub, P. Vempati, F. Mac Gabhann and A. Popel, Modulebased multiscale simulation of angiogenesis in skeletal muscle,, Theor. Biol. Med. Model., 8 (2011). 
[85] 
I. B. Lobov, P. C. Brooks and R. A. Lang, Angiopoietin2 displays VEGFdependent modulation of capillary structure and endothelial cell survival in vivo,, PNAS, 99 (2002), 11205. 
[86] 
N. R. London, K. J. Whitehead and D. Y. Li, Endogenous endothelial cell signaling systems maintain vascular stability,, Angiogenesis, 12 (2009), 149. 
[87] 
B. Loret and F. M. F. Simes, A framework for deformation, generalized diffusion, mass transfer and growth in multispecies multiphase biological tissues,, Eur. J. Mech. ASolid, 24 (2005), 757. doi: 10.1016/j.euromechsol.2005.05.005. 
[88] 
C. Lu, A. A. Kamat, Y. G. Lin, et al, Dual targeting of endothelial cells and pericytes in antivascular therapy for ovarian carcinoma,, Clin. Cancer Res., 13 (2007), 4209. 
[89] 
C. Lu, P. H. Thaker, Y. G. Lin, et al, Impact of vessel maturation on antiangiogenic therapy in ovarian cancer,, Am. J. Obstet. Gynecol., 198 (2008). 
[90] 
R. Mabry, D. G Gilbertson, A. Frank, et al, A dualtargeting pdgfrbeta/vegfa molecule assembled from stable antibody fragments demonstrates antiangiogenic activity in vitro and in vivo,, mAbs, 2 (2010), 20. 
[91] 
F. Mac Gabhann and A. S. Popel, Model of competitive binding of vascular endothelial growth factor and placental growth factor to VEGF receptors on endothelial cells,, Am. J. Physiol. Heart Circ. Physiol., 286 (2004), 153. 
[92] 
F. Mac Gabhann and A. S. Popel, Targeting neuropilin1 to inhibit vegf signaling in cancer: Comparison of therapeutic approaches,, PLoS Comput. Biol., 2 (2006). 
[93] 
F. Mac Gabhann and A. S. Popel, Dimerization of VEGF receptors and implications for signal transduction: A computational study,, Biophys. Chem., 128 (2007), 125. 
[94] 
P. C. Maisonpierre, C. Suri, P. F. Jones, et al, Angiopoietin2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis,, Science, 277 (1997), 55. 
[95] 
S. J. Mandriota and M. S. Pepper, Regulation of angiopoietin2 mRNA levels in bovine microvascular endothelial cells by cytokines and hypoxia,, Circ. Res., 83 (1998), 852. 
[96] 
D. Manoussaki, A mechanochemical model of angiogenesis and vasculogenesis,, ESAIM: Mathematical Modelling and Numerical Analysis, 37 (2003), 581. doi: 10.1051/m2an:2003046. 
[97] 
N. Mantzaris, S. Webb and H. G. Othmer, Mathematical modeling of tumorinduced angiogenesis,, J. Math Biol., 49 (2004), 111. doi: 10.1007/s0028500302622. 
[98] 
K. Matsushita, M. Yamakuchi, C. N. Morrell, et al, Vascular endothelial growth factor regulation of WeibelPaladebody exocytosis,, Blood, 105 (2005). 
[99] 
S. R. McDougall, A. R. A. Anderson and M. A. J. Chaplain, Mathematical modelling of dynamic adaptive tumourinduced angiogenesis: Clinical implications and therapeutic targeting strategies,, J. Theor. Biol., 241 (2006), 564. doi: 10.1016/j.jtbi.2005.12.022. 
[100] 
S. R. McDougall, M. A. J. Chaplain, A. Stéphanou and A. R. A. Anderson, Modelling the impact of pericyte migration and coverage of vessels on the efficacy of vascular disrupting agents,, Math. Model. Nat. Phenom., 5 (2010), 163. doi: 10.1051/mmnp/20105108. 
[101] 
Q. Mi, D. Swigon, et al, Onedimensional elastic continuum model of enterocyte layer migration,, Biophys. J., 93 (2007), 3745. 
[102] 
F. Milde, M. Bergdorf and P. Koumoutsakos, A hybrid model for threedimensional simulations of sprouting angiogenesis,, Biophys. J., 95 (2008), 3146. 
[103] 
R. Muñoz Chápuli, A. R. Quesada and M. Ángel Medina, Angiogenesis and signal transduction in endothelial cells,, Cell. Mol. Life Sci., 61 (2004), 2224. 
[104] 
G. N. Naumov, E. Bender, Zurakowski, et al, A model of human tumor dormancy: An angiogenic switch from the nonangiogenic phenotype,, J. Natl. Cancer Inst., 98 (2006), 316. 
[105] 
J. Nor and P. Polverini, Role of endothelial cell survival and death signals in angiogenesis,, Angiogenesis, 3 (1999), 101. 
[106] 
H. Oh, H. Takagi, K. Suzuma, et al, Hypoxia and vascular endothelial growth factor selectively upregulate angiopoietin2 in bovine microvascular endothelial cells,, J. Biol. Chem., 274 (1999), 15732. 
[107] 
J. Oliner et al, Suppression of angiogenesis and tumor growth by selective inhibition of angiopoietin2,, Cancer Cell, 6 (2004), 507. 
[108] 
M. R. Owen, T. Alarcon, P. K. Maini and H. M. Byrne, Angiogenesis and vascular remodelling in normal and cancerous tissues,, J. Theor. Biol., 58 (2009), 689. doi: 10.1007/s002850080213z. 
[109] 
S. M. Parikh, T. Mammoto, A. Schultz, et al, Excess circulating angiopoietin2 may contribute to pulmonary vascular leak in sepsis in humans,, PLoS Med., 3 (2006). 
[110] 
S. M. Peirce, Computational and mathematical modeling of angiogenesis,, Microcirculation, 15 (2008), 739. 
[111] 
S. M. Peirce, E. J. Van Gieson and T. C. Skalak, Multicellular simulation predicts microvascular patterning and in silico tissue assembly,, FASEB J., 18 (2004), 731. 
[112] 
K. Pietras and D. Hanahan, A multitargeted, metronomic, and maximumtolerated dose chemoswitch regimen is antiangiogenic, producing objective responses and survival benefit in a mouse model of cancer,, J. Clin. Oncol., 23 (2005), 939. 
[113] 
M. J. Plank and B. D. Sleeman, A reinforced random walk model of tumor angiogenesis and antiangiogenesis strategies,, IMA J. Math. Med. Biol., 20 (2003), 135. 
[114] 
M. J. Plank and B. D. Sleeman, Lattice and nonlattice models of tumour angiogenesis,, Bull. Math. Biol., 66 (2004), 1785. doi: 10.1016/j.bulm.2004.04.001. 
[115] 
M. J. Plank, B. D. Sleeman and P. F. Jones, A mathematical model of tumour angiogenesis, regulated by vascular endothelial growth factor and the angiopoietins,, J. Theor. Biol., 229 (2004), 435. doi: 10.1016/j.jtbi.2004.04.012. 
[116] 
M. Prass, K. Jacobson, A. Mogilner and M. Radmacher, Direct measurement of the lamellipodial protrusive force in a migrating cell,, J. Cell Biol., 174 (2006), 767. 
[117] 
A. A. Qutub, F. Mac Gabhann, E. D. Karagiannis, P. Vempati and A. S. Popel, Multiscale models of angiogenesis,, IEEE Eng. Med. Biol. Mag., 28 (2009), 14. 
[118] 
A. A. Qutub and A. Popel, Elongation, proliferation $&$ migration differentiate endothelial cell phenotypes and determine capillary sprouting,, BMC Syst. Biol., 3 (2009). 
[119] 
A. Ramasubramanian and L. Taber, Computational modeling of morphogenesis regulated by mechanical feedback,, Biomech. Model. Mechanobiol., 7 (2008), 77. 
[120] 
A. Raza, M. J. Franklin and A. Z. Dudek, Pericytes and vessel maturation during tumor angiogenesis and metastasis,, Am. J. Hematol., 85 (2010), 593. 
[121] 
Y. Reiss, J. Droste, M. Heil, et al, Angiopoietin2 impairs revascularization after limb ischemia,, Circ. Res., 101 (2007), 88. 
[122] 
E. K. Rodriguez, A. Hoger and A. D. McCulloch, Stressdependent finite growth in soft elastic tissues,, J. Biomech., 27 (1994), 455. 
[123] 
P. Saharinen, L. Eklund, J. Miettinen, et al, Angiopoietins assemble distinct Tie2 signalling complexes in endothelial cellcell and cellmatrix contacts,, Nat. Cell Biol., 10 (2008), 527. 
[124] 
R.C. Schugart, A. Friedman, R. Zhao and C. K. Sen, Wound angiogenesis as a function of tissue oxygen tension: A mathematical model,, PNAS, 105 (2008), 2628. 
[125] 
C. E. Semino, R. D. Kamm and D. A. Lauffenburger, Autocrine EGF receptor activation mediates endothelial cell migration and vascular morphogenesis induced by VEGF under interstitial flow,, Exp. Cell Res., 312 (2006), 289. 
[126] 
G. Serini, D. Ambrosi, E. Giraudo, et al, Modeling the early stages of vascular network assembly,, EMBO J., 22 (2003), 1771. 
[127] 
C. Sfiligoi, A. de Luca, I. Cascone, et al, Angiopoietin2 expression in breast cancer correlates with lymph node invasion and short survival,, Int. J. Cancer, 103 (2003), 466. 
[128] 
J. Shen et al, An antibody directed against pdgf receptor enhances the antitumor and the antiangiogenic activities of an antivegf receptor 2 antibody,, Biochem. Biophys. Res. Commun., 357 (2007), 1142. 
[129] 
J. A. Sherratt and J. D. Murrat, Models of epidermal wound healing,, Proc. R. Soc. Lond. B., 241 (1990), 29. 
[130] 
M. M. Sholley, G. P. Ferguson, H. R. Seibel, et al, Mechanisms of neovascularization. Vascular sprouting can occur without proliferation of endothelial cells,, Lab. Invest., 51 (1984), 624. 
[131] 
B. D. Sleeman and I. P. Wallis, Tumour induced angiogenesis as a reinforced random walk: modeling capillary network formation without endothelial cell proliferation,, Math. Comput. Model., 36 (2002), 339. doi: 10.1016/S08957177(02)001292. 
[132] 
A. Stephanou, S. R. McDougall, A. R. A. Anderson and M. A. J. Chaplain, Mathematical modelling of the influence of blood rheological properties upon adaptative tumourinduced angiogenesis,, J. Theor. Biol., 44 (2006), 96. doi: 10.1016/j.mcm.2004.07.021. 
[133] 
C. L. Stokes and D. A. Lauffenburger, Analysis of the roles of microvessel endothelial cell random mobility and chemotaxis in angiogenesis,, J. Ther. Biol., 152 (1991), 377. 
[134] 
S. Sun, M. F. Wheeler, M. Obeyesekere and C. Patrick, A deterministic model of growth factorinduced angiogenesis,, Bull. Math. Biol., 67 (2005), 313. doi: 10.1016/j.bulm.2004.07.004. 
[135] 
C. Sundberg, M. Kowanetz, L.F. Brown, M. Detmar and H. F. Dvorak, Stable expression of angiopoietin1 and other markers by cultured pericytes: Phenotypic similarities to a subpopulation of cells in maturing vessels during later stages of angiogenesis in vivo,, Lab. Invest., 82 (2002), 387. 
[136] 
C. Suri, P. F. Jones, S. Patan, et al, Requisite role of angiopoietin1, a ligand for the Tie2 receptor, during embryonic angiogenesis,, Cell, 87 (1996), 1171. 
[137] 
A. Szabo, E. D. Perryn and A. Czirok, Network formation of tissue cells via preferential attraction to elongated structures,, Phys. Rev. Lett., 98 (2007). 
[138] 
D. Szczerba, H. Kurz and G. Szekely, A computational model of intussusceptive microvascular growth and remodeling,, J. Theor. Biol., 261 (2009), 570. 
[139] 
C. R. Tait and P. F. Jones, Angiopoietins in tumours: the angiogenic switch,, J. Pathol., 204 (2004), 1. 
[140] 
K. TeichertKuliszewska, P. C. Maisonpierre, N. Jones, et al, Biological action of angiopoietin2 in a fibrin matrix model of angiogenesis is associated with activation of Tie2,, Cardiovasc. Res., 49 (2001), 659. 
[141] 
L. J. Thompson, F. Wang, A. D. Proia, et al, Proteome analysis of the rat cornea during angiogenesis,, Proteomics, 3 (2003), 2258. 
[142] 
O. Thoumine and A. Ott, Time scale dependent viscoelastic and contractile regimes in fibroblasts probed by microplate manipulation,, J. Cell Sci., 110 (1997), 2109. 
[143] 
G. Thurston, J. S. Rudge, E. Ioffe, et al, Angiopoietin1 protects the adult vasculature against plasma leakage,, Nat. Med., 6 (2000), 460. 
[144] 
G. Thurston, C. Suri, K. Smith, et al, Leakageresistant blood vessels in mice transgenically overexpressing angiopoietin 2,, Science, 286 (1999), 2511. 
[145] 
S. Tong and F. Yuan, Numerical simulations of angiogenesis in the cornea,, Microvasc. Res., 61 (2001), 14. 
[146] 
R. D. M. Travasso, E. Corvera Poir, M. Castro, et al, Tumor angiogenesis and vascular patterning: A mathematical model,, PLoS ONE, 6 (2011). 
[147] 
R. Tyson, L. G. Stern and R. J. LeVeque, Fractional step methods applied to a chemotaxis model,, J. Math. Biol., 41 (2000), 455. doi: 10.1007/s002850000038. 
[148] 
K. Y. Volokh, Stresses in growing soft tissues,, Acta Biomater., 2 (2006), 493. 
[149] 
S. Wakui, K. Yokoo, T. Muto, et al, Localization of Ang1, 2, Tie2, and VEGF expression at endothelialpericyte interdigitation in rat angiogenesis,, Lab. Invest., 86 (2006), 1172. 
[150] 
R. Wcislo, W. Dzwinel, D. Yuen and A. Dudek, A 3D model of tumor progression based on complex automata driven by particle dynamics,, J. Mol. Model., 15 (2009), 1517. 
[151] 
M. Welter, K. Bartha and H. Rieger, Vascular remodelling of an arteriovenous blood vessel network during solid tumour growth,, J. Theor. Biol., 259 (2009), 405. 
[152] 
R. R. White, S. Shan, C. P. Rusconi, et al, Inhibition of rat corneal angiogenesis by a nucleaseresistant RNA aptamer specific for angiopoietin2,, PNAS, 100 (2003), 5028. 
[153] 
J. L. WilkinsonBerka, S. Babic, T. de Gooyer, et al, Inhibition of plateletderived growth factor promotes pericyte loss and angiogenesis in ischemic retinopathy,, Am. J. Pathol., 164 (2004), 1263. 
[154] 
J. Wu, Q. Long, Xu S. and A. R. Padhani, Study of tumor blood perfusion and its variation due to vascular normalization by antiangiogenic therapy based on 3d angiogenic microvasculature,, J. Biomech., 42 (2009), 712. 
[155] 
C. Xue, A. Friedman and C. K. Sen, A mathematical model of ischemic cutaneous wounds,, PNAS, 106 (2009), 16782. 
[156] 
S. Yang and T. Saif, Reversible and repeatable linear local cell force response under large stretches,, Exp. Cell Res., 305 (2005), 42. 
[157] 
H. T. Yuan, E. V. Khankin, S. A. Karumanchi and S. M. Parikh, Angiopoietin 2 is a partial agonist/antagonist of Tie2 signaling in the endothelium,, Mol. Cell. Biol., 29 (2009), 2011. 
[158] 
H. T. Yuan, P. G. Tipping, X. Z. Li, D. A. Long and A. S. Woolf, Angiopoietin correlates with glomerular capillary loss in antiglomerular basement membrane glomerulonephritis,, Kidney Int., 61 (2002), 2078. 
[159] 
L. Zhang, N. Yang, J. Park, et al, Tumorderived vascular endothelial growth factor upregulates angiopoietin2 in host endothelium and destabilizes host vasculature, supporting angiogenesis in ovarian cancer,, Cancer Res., 63 (2003), 3403. 
[160] 
X. Zheng, Y. Kim, L. Rakesh and E.B. Lin, A conservative multiresolution finite volume method for reaction and diffusion in angiogenesis,, Submitted., (). 
[161] 
X. Zheng, S. Wise and V. Cristini, Nonlinear simulation of tumor necrosis, neovascularization and tissue invasion via an adaptive finiteelement/levelset method,, Bull. Math. Biol., 67 (2005), 211. doi: 10.1016/j.bulm.2004.08.001. 
[162] 
X. Zheng and C. Xie, A viscoelastic model of blood capillary extension and regression: Derivation, analysis, and simulation,, J. Math. Biol., (2012). doi: 10.1007/s0028501206248. 
[1] 
Thierry Colin, MarieChristine Durrieu, Julie Joie, Yifeng Lei, Youcef Mammeri, Clair Poignard, Olivier Saut. Modeling of the migration of endothelial cells on bioactive micropatterned polymers. Mathematical Biosciences & Engineering, 2013, 10 (4) : 9971015. doi: 10.3934/mbe.2013.10.997 
[2] 
Julie Joie, Yifeng Lei, MarieChristine Durrieu, Thierry Colin, Clair Poignard, Olivier Saut. Migration and orientation of endothelial cells on micropatterned polymers: A simple model based on classical mechanics. Discrete & Continuous Dynamical Systems  B, 2015, 20 (4) : 10591076. doi: 10.3934/dcdsb.2015.20.1059 
[3] 
Shaoyong Lai, Yulan Zhou. A stochastic optimal growth model with a depreciation factor. Journal of Industrial & Management Optimization, 2010, 6 (2) : 283297. doi: 10.3934/jimo.2010.6.283 
[4] 
Justin P. Peters, Khalid Boushaba, Marit NilsenHamilton. A Mathematical Model for Fibroblast Growth Factor Competition Based on Enzyme. Mathematical Biosciences & Engineering, 2005, 2 (4) : 789810. doi: 10.3934/mbe.2005.2.789 
[5] 
Mostafa Adimy, Fabien Crauste. Modeling and asymptotic stability of a growth factordependent stem cell dynamics model with distributed delay. Discrete & Continuous Dynamical Systems  B, 2007, 8 (1) : 1938. doi: 10.3934/dcdsb.2007.8.19 
[6] 
ZhiAn Wang. Wavefront of an angiogenesis model. Discrete & Continuous Dynamical Systems  B, 2012, 17 (8) : 28492860. doi: 10.3934/dcdsb.2012.17.2849 
[7] 
Marzena Dolbniak, Malgorzata Kardynska, Jaroslaw Smieja. Sensitivity of combined chemoand antiangiogenic therapy results in different models describing cancer growth. Discrete & Continuous Dynamical Systems  B, 2018, 23 (1) : 145160. doi: 10.3934/dcdsb.2018009 
[8] 
Emad Attia, Marek Bodnar, Urszula Foryś. Angiogenesis model with Erlang distributed delays. Mathematical Biosciences & Engineering, 2017, 14 (1) : 115. doi: 10.3934/mbe.2017001 
[9] 
Didier Bresch, Thierry Colin, Emmanuel Grenier, Benjamin Ribba, Olivier Saut. A viscoelastic model for avascular tumor growth. Conference Publications, 2009, 2009 (Special) : 101108. doi: 10.3934/proc.2009.2009.101 
[10] 
Xianhua Tang, Xingfu Zou. A 3/2 stability result for a regulated logistic growth model. Discrete & Continuous Dynamical Systems  B, 2002, 2 (2) : 265278. doi: 10.3934/dcdsb.2002.2.265 
[11] 
KaiUwe Schmidt. The merit factor of binary arrays derived from the quadratic character. Advances in Mathematics of Communications, 2011, 5 (4) : 589607. doi: 10.3934/amc.2011.5.589 
[12] 
Yangjin Kim, Seongwon Lee, YouSun Kim, Sean Lawler, Yong Song Gho, YoonKeun Kim, Hyung Ju Hwang. Regulation of Th1/Th2 cells in asthma development: A mathematical model. Mathematical Biosciences & Engineering, 2013, 10 (4) : 10951133. doi: 10.3934/mbe.2013.10.1095 
[13] 
Marek Bodnar, Monika Joanna Piotrowska, Urszula Foryś, Ewa Nizińska. Model of tumour angiogenesis  analysis of stability with respect to delays. Mathematical Biosciences & Engineering, 2013, 10 (1) : 1935. doi: 10.3934/mbe.2013.10.19 
[14] 
Xiong Li, Hao Wang. A stoichiometrically derived algal growth model and its global analysis. Mathematical Biosciences & Engineering, 2010, 7 (4) : 825836. doi: 10.3934/mbe.2010.7.825 
[15] 
J. Ignacio Tello. On a mathematical model of tumor growth based on cancer stem cells. Mathematical Biosciences & Engineering, 2013, 10 (1) : 263278. doi: 10.3934/mbe.2013.10.263 
[16] 
Ke Ruan, Masao Fukushima. Robust portfolio selection with a combined WCVaR and factor model. Journal of Industrial & Management Optimization, 2012, 8 (2) : 343362. doi: 10.3934/jimo.2012.8.343 
[17] 
Steffen Eikenberry, Sarah Hews, John D. Nagy, Yang Kuang. The dynamics of a delay model of hepatitis B virus infection with logistic hepatocyte growth. Mathematical Biosciences & Engineering, 2009, 6 (2) : 283299. doi: 10.3934/mbe.2009.6.283 
[18] 
Russell Betteridge, Markus R. Owen, H.M. Byrne, Tomás Alarcón, Philip K. Maini. The impact of cell crowding and active cell movement on vascular tumour growth. Networks & Heterogeneous Media, 2006, 1 (4) : 515535. doi: 10.3934/nhm.2006.1.515 
[19] 
Amit Kumar Roy, Priti Kumar Roy, Ellina Grigorieva. Mathematical insights on psoriasis regulation: Role of Th_{1} and Th_{2} cells. Mathematical Biosciences & Engineering, 2018, 15 (3) : 717738. doi: 10.3934/mbe.2018032 
[20] 
Artur Avila, Thomas Roblin. Uniform exponential growth for some SL(2, R) matrix products. Journal of Modern Dynamics, 2009, 3 (4) : 549554. doi: 10.3934/jmd.2009.3.549 
2016 Impact Factor: 0.994
Tools
Metrics
Other articles
by authors
[Back to Top]