2013, 18(4): 1031-1051. doi: 10.3934/dcdsb.2013.18.1031

Optimal controls for a mathematical model of tumor-immune interactions under targeted chemotherapy with immune boost

1. 

Dept. of Mathematics and Statistics, Southern Illinois University Edwardsville, Edwardsville, Illinois, 62026-1653, United States

2. 

Dept. of Electrical and Systems Engineering, Washington University, St. Louis, Missouri, 63130-4899

Received  December 2011 Revised  April 2012 Published  February 2013

An optimal control problem for combination of cancer chemotherapy with immunotherapy in form of a boost to the immune system is considered as a multi-input optimal control problem. The objective to be minimized is chosen as a weighted average of (i) the number of cancer cells at the terminal time, (ii) a measure for the immunocompetent cell densities at the terminal point (included as a negative term), the overall amounts of (iii) cytotoxic agents and (iv) immune boost given as a measure for the side effects of treatment and (v) a small penalty on the free terminal time that limits the overall therapy horizon. This last term is essential in obtaining a mathematically well-posed problem formulation. Both analytical and numerical results about the structures of optimal controls will be presented that give some insights into the structure of optimal protocols, i.e., the dose rates and sequencing of drugs in these combination treatments.
Citation: Urszula Ledzewicz, Mozhdeh Sadat Faraji Mosalman, Heinz Schättler. Optimal controls for a mathematical model of tumor-immune interactions under targeted chemotherapy with immune boost. Discrete & Continuous Dynamical Systems - B, 2013, 18 (4) : 1031-1051. doi: 10.3934/dcdsb.2013.18.1031
References:
[1]

D. J. Bell and D. H. Jacobson, "Singular Optimal Control Problems,", Academic Press, (1975).

[2]

D. A. Benson, "A Gauss Pseudospectral Transcription for Optimal Control,", Ph.D. thesis, (2004).

[3]

D. A. Benson, G. T. Huntington, T. P. Thorvaldsen and A. V. Rao, Direct trajectory optimization and costate estimation via an orthogonal collocation method,, J. of Guidance, 29 (2006), 1435.

[4]

B. Bonnard and M. Chyba, "Singular Trajectories and their Role in Control Theory,", Springer Verlag, (2003).

[5]

A. Bressan and B. Piccoli, "Introduction to the Mathematical Theory of Control,", American Institute of Mathematical Sciences, (2007).

[6]

T. Burden, J. Ernstberger and K. R. Fister, Optimal control applied to immunotherapy, Discrete and Continuous Dynamical Systems - Series B, 4 (2004), 135.

[7]

F. Castiglione and B. Piccoli, Optimal control in a model of dendritic cell transfection cancer immunotherapy,, Bulletin of Mathematical Biology, 68 (2006), 255. doi: 10.1007/s11538-005-9014-3.

[8]

M. Eisen, "Mathematical Models in Cell Biology and Cancer Chemotherapy,", Lecture Notes in Biomathematics, 30 (1979).

[9]

A. Ergun, K. Camphausen and L. M. Wein, Optimal scheduling of radiotherapy and angiogenic inhibitors,, Bulletin of Mathematical Biology, 65 (2003), 407.

[10]

K. R. Fister and J. Hughes Donnelly, Immunotherapy: an optimal control approach,, Mathematical Biosciences and Engineering (MBE), 2 (2005), 499. doi: 10.3934/mbe.2005.2.499.

[11]

J. Guckenheimer and P. Holmes, "Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields,", Springer Verlag, (1983).

[12]

G. T. Huntington, "Advancement and Analysis of a Gauss Pseudospectral Transcription for Optimal Control,", Ph.D. thesis, (2007).

[13]

D. Kirschner and J. C. Panetta, Modeling immunotherapy of the tumor-immune interaction,, J. of Mathematical Biology, 37 (1998), 235.

[14]

V. A. Kuznetsov, I. A. Makalkin, M. A. Taylor and A. S. Perelson, Nonlinear dynamics of immunogenic tumors: parameter estimation and global bifurcation analysis,, Bull. Mathematical Biology, 56 (1994), 295.

[15]

U. Ledzewicz, J. Marriott, H. Maurer and H. Schättler, Realizable protocols for optimal administration of drugs in mathematical models for anti-angiogenic treatment,, Math. Medicine and Biology, 27 (2010), 157. doi: 10.1093/imammb/dqp012.

[16]

U. Ledzewicz, H. Maurer and H. Schättler, Bang-bang and singular controls in a mathematical model for combined anti-angiogenic and chemotherapy treatments,, Proc. 48th IEEE Conf. on Dec. and Contr., (2009), 2280.

[17]

U. Ledzewicz, M. Naghnaeian and H. Schättler, An optimal control approach to cancer treatment under immunological activity,, Applicationes Mathematicae, 38 (2011), 17. doi: 10.4064/am38-1-2.

[18]

U. Ledzewicz, M. Naghnaeian and H. Schättler, Bifurcation of singular arcs in an optimal control problem for cancer immune system interactions under treatment,, Proceedings of the 49th IEEE Conf. on Decision and Control, (2010), 7039.

[19]

U. Ledzewicz, M. Naghnaeian and H. Schättler, Dynamics of tumor-immune interactions under treatment as an optimal control problem,, Proc. of the 8th AIMS Conf., (2010), 971.

[20]

U. Ledzewicz, M. Naghnaeian and H. Schättler, Optimal response to chemotherapy for a mathematical model of tumor-immune dynamics,, J. of Mathematical Biology, 64 (2012), 557. doi: 10.1007/s00285-011-0424-6.

[21]

U. Ledzewicz and H. Schättler, Analysis of a cell-cycle specific model for cancer chemotherapy,, J. of Biological Systems, 10 (2002), 183.

[22]

U. Ledzewicz and H. Schättler, Antiangiogenic therapy in cancer treatment as an optimal control problem,, SIAM J. Control and Optimization, 46 (2007), 1052. doi: 10.1137/060665294.

[23]

U. Ledzewicz and H. Schättler, Optimal and suboptimal protocols for a class of mathematical models of tumor anti-angiogenesis,, J. of Theoretical Biology, 252 (2008), 295.

[24]

L. Norton and R. Simon, Growth curve of an experimental solid tumor following radiotherapy,, J. of the National Cancer Institute, 58 (1977), 1735.

[25]

L. Norton, A Gompertzian model of human breast cancer growth,, Cancer Research, 48 (1988), 7067.

[26]

A. d'Onofrio, A general framework for modeling tumor-immune system competition and immunotherapy: mathematical analysis and biomedical inferences,, Physica D, 208 (2005), 220. doi: 10.1016/j.physd.2005.06.032.

[27]

A. d'Onofrio, Tumor-immune system interaction: modeling the tumor-stimulated proliferation of effectors and immunotherapy,, Math. Models and Methods in Applied Sciences, 16 (2006), 1375. doi: 10.1142/S0218202506001571.

[28]

A. d'Onofrio, U. Ledzewicz, H. Maurer and H. Schättler, On Optimal Delivery of Combination Therapy for Tumors,, Mathematical Biosciences, 222 (2009), 13. doi: 10.1016/j.mbs.2009.08.004.

[29]

L. G. de Pillis and A. Radunskaya, A mathematical tumor model with immune resistance and drug therapy: an optimal control approach,, J. of Theoretical Medicine, 3 (2001), 79.

[30]

A. V. Rao, D. A. Benson, G. T. Huntington, C. Francolin, C. L. Darby and M. A. Patterson, "User's Manual for GPOPS: A MATLAB Package for Dynamic Optimization Using the Gauss Pseudospectral Method,", University of Florida Report, (2008).

[31]

H. Schättler and U. Ledzewicz, "Geometric Optimal Control: Theory, Methods and Examples,", Springer Verlag, (2012). doi: 10.1007/978-1-4614-3834-2.

[32]

N.V. Stepanova, Course of the immune reaction during the development of a malignant tumour,, Biophysics, 24 (1980), 917.

[33]

G. W. Swan, Role of optimal control in cancer chemotherapy,, Mathematical Biosciences, 101 (1990), 237.

[34]

A. Swierniak, Optimal treatment protocols in leukemia - modelling the proliferation cycle,, Proceedings of the 12th IMACS World Congress, 4 (1988), 170.

[35]

A. Swierniak, Cell cycle as an object of control,, J. of Biological Systems, 3 (1995), 41.

[36]

A. Swierniak, U. Ledzewicz and H. Schättler, Optimal control for a class of compartmental models in cancer chemotherapy,, Int. J. Applied Mathematics and Computer Science, 13 (2003), 357.

[37]

H. P. de Vladar and J. A. González, Dynamic response of cancer under the influence of immunological activity and therapy,, J. of Theoretical Biology, 227 (2004), 335. doi: 10.1016/j.jtbi.2003.11.012.

show all references

References:
[1]

D. J. Bell and D. H. Jacobson, "Singular Optimal Control Problems,", Academic Press, (1975).

[2]

D. A. Benson, "A Gauss Pseudospectral Transcription for Optimal Control,", Ph.D. thesis, (2004).

[3]

D. A. Benson, G. T. Huntington, T. P. Thorvaldsen and A. V. Rao, Direct trajectory optimization and costate estimation via an orthogonal collocation method,, J. of Guidance, 29 (2006), 1435.

[4]

B. Bonnard and M. Chyba, "Singular Trajectories and their Role in Control Theory,", Springer Verlag, (2003).

[5]

A. Bressan and B. Piccoli, "Introduction to the Mathematical Theory of Control,", American Institute of Mathematical Sciences, (2007).

[6]

T. Burden, J. Ernstberger and K. R. Fister, Optimal control applied to immunotherapy, Discrete and Continuous Dynamical Systems - Series B, 4 (2004), 135.

[7]

F. Castiglione and B. Piccoli, Optimal control in a model of dendritic cell transfection cancer immunotherapy,, Bulletin of Mathematical Biology, 68 (2006), 255. doi: 10.1007/s11538-005-9014-3.

[8]

M. Eisen, "Mathematical Models in Cell Biology and Cancer Chemotherapy,", Lecture Notes in Biomathematics, 30 (1979).

[9]

A. Ergun, K. Camphausen and L. M. Wein, Optimal scheduling of radiotherapy and angiogenic inhibitors,, Bulletin of Mathematical Biology, 65 (2003), 407.

[10]

K. R. Fister and J. Hughes Donnelly, Immunotherapy: an optimal control approach,, Mathematical Biosciences and Engineering (MBE), 2 (2005), 499. doi: 10.3934/mbe.2005.2.499.

[11]

J. Guckenheimer and P. Holmes, "Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields,", Springer Verlag, (1983).

[12]

G. T. Huntington, "Advancement and Analysis of a Gauss Pseudospectral Transcription for Optimal Control,", Ph.D. thesis, (2007).

[13]

D. Kirschner and J. C. Panetta, Modeling immunotherapy of the tumor-immune interaction,, J. of Mathematical Biology, 37 (1998), 235.

[14]

V. A. Kuznetsov, I. A. Makalkin, M. A. Taylor and A. S. Perelson, Nonlinear dynamics of immunogenic tumors: parameter estimation and global bifurcation analysis,, Bull. Mathematical Biology, 56 (1994), 295.

[15]

U. Ledzewicz, J. Marriott, H. Maurer and H. Schättler, Realizable protocols for optimal administration of drugs in mathematical models for anti-angiogenic treatment,, Math. Medicine and Biology, 27 (2010), 157. doi: 10.1093/imammb/dqp012.

[16]

U. Ledzewicz, H. Maurer and H. Schättler, Bang-bang and singular controls in a mathematical model for combined anti-angiogenic and chemotherapy treatments,, Proc. 48th IEEE Conf. on Dec. and Contr., (2009), 2280.

[17]

U. Ledzewicz, M. Naghnaeian and H. Schättler, An optimal control approach to cancer treatment under immunological activity,, Applicationes Mathematicae, 38 (2011), 17. doi: 10.4064/am38-1-2.

[18]

U. Ledzewicz, M. Naghnaeian and H. Schättler, Bifurcation of singular arcs in an optimal control problem for cancer immune system interactions under treatment,, Proceedings of the 49th IEEE Conf. on Decision and Control, (2010), 7039.

[19]

U. Ledzewicz, M. Naghnaeian and H. Schättler, Dynamics of tumor-immune interactions under treatment as an optimal control problem,, Proc. of the 8th AIMS Conf., (2010), 971.

[20]

U. Ledzewicz, M. Naghnaeian and H. Schättler, Optimal response to chemotherapy for a mathematical model of tumor-immune dynamics,, J. of Mathematical Biology, 64 (2012), 557. doi: 10.1007/s00285-011-0424-6.

[21]

U. Ledzewicz and H. Schättler, Analysis of a cell-cycle specific model for cancer chemotherapy,, J. of Biological Systems, 10 (2002), 183.

[22]

U. Ledzewicz and H. Schättler, Antiangiogenic therapy in cancer treatment as an optimal control problem,, SIAM J. Control and Optimization, 46 (2007), 1052. doi: 10.1137/060665294.

[23]

U. Ledzewicz and H. Schättler, Optimal and suboptimal protocols for a class of mathematical models of tumor anti-angiogenesis,, J. of Theoretical Biology, 252 (2008), 295.

[24]

L. Norton and R. Simon, Growth curve of an experimental solid tumor following radiotherapy,, J. of the National Cancer Institute, 58 (1977), 1735.

[25]

L. Norton, A Gompertzian model of human breast cancer growth,, Cancer Research, 48 (1988), 7067.

[26]

A. d'Onofrio, A general framework for modeling tumor-immune system competition and immunotherapy: mathematical analysis and biomedical inferences,, Physica D, 208 (2005), 220. doi: 10.1016/j.physd.2005.06.032.

[27]

A. d'Onofrio, Tumor-immune system interaction: modeling the tumor-stimulated proliferation of effectors and immunotherapy,, Math. Models and Methods in Applied Sciences, 16 (2006), 1375. doi: 10.1142/S0218202506001571.

[28]

A. d'Onofrio, U. Ledzewicz, H. Maurer and H. Schättler, On Optimal Delivery of Combination Therapy for Tumors,, Mathematical Biosciences, 222 (2009), 13. doi: 10.1016/j.mbs.2009.08.004.

[29]

L. G. de Pillis and A. Radunskaya, A mathematical tumor model with immune resistance and drug therapy: an optimal control approach,, J. of Theoretical Medicine, 3 (2001), 79.

[30]

A. V. Rao, D. A. Benson, G. T. Huntington, C. Francolin, C. L. Darby and M. A. Patterson, "User's Manual for GPOPS: A MATLAB Package for Dynamic Optimization Using the Gauss Pseudospectral Method,", University of Florida Report, (2008).

[31]

H. Schättler and U. Ledzewicz, "Geometric Optimal Control: Theory, Methods and Examples,", Springer Verlag, (2012). doi: 10.1007/978-1-4614-3834-2.

[32]

N.V. Stepanova, Course of the immune reaction during the development of a malignant tumour,, Biophysics, 24 (1980), 917.

[33]

G. W. Swan, Role of optimal control in cancer chemotherapy,, Mathematical Biosciences, 101 (1990), 237.

[34]

A. Swierniak, Optimal treatment protocols in leukemia - modelling the proliferation cycle,, Proceedings of the 12th IMACS World Congress, 4 (1988), 170.

[35]

A. Swierniak, Cell cycle as an object of control,, J. of Biological Systems, 3 (1995), 41.

[36]

A. Swierniak, U. Ledzewicz and H. Schättler, Optimal control for a class of compartmental models in cancer chemotherapy,, Int. J. Applied Mathematics and Computer Science, 13 (2003), 357.

[37]

H. P. de Vladar and J. A. González, Dynamic response of cancer under the influence of immunological activity and therapy,, J. of Theoretical Biology, 227 (2004), 335. doi: 10.1016/j.jtbi.2003.11.012.

[1]

Urszula Ledzewicz, Omeiza Olumoye, Heinz Schättler. On optimal chemotherapy with a strongly targeted agent for a model of tumor-immune system interactions with generalized logistic growth. Mathematical Biosciences & Engineering, 2013, 10 (3) : 787-802. doi: 10.3934/mbe.2013.10.787

[2]

Urszula Ledzewicz, Mohammad Naghnaeian, Heinz Schättler. Dynamics of tumor-immune interaction under treatment as an optimal control problem. Conference Publications, 2011, 2011 (Special) : 971-980. doi: 10.3934/proc.2011.2011.971

[3]

Shuo Wang, Heinz Schättler. Optimal control of a mathematical model for cancer chemotherapy under tumor heterogeneity. Mathematical Biosciences & Engineering, 2016, 13 (6) : 1223-1240. doi: 10.3934/mbe.2016040

[4]

Dan Liu, Shigui Ruan, Deming Zhu. Bifurcation analysis in models of tumor and immune system interactions. Discrete & Continuous Dynamical Systems - B, 2009, 12 (1) : 151-168. doi: 10.3934/dcdsb.2009.12.151

[5]

J.C. Arciero, T.L. Jackson, D.E. Kirschner. A mathematical model of tumor-immune evasion and siRNA treatment. Discrete & Continuous Dynamical Systems - B, 2004, 4 (1) : 39-58. doi: 10.3934/dcdsb.2004.4.39

[6]

Mohammad A. Tabatabai, Wayne M. Eby, Karan P. Singh, Sejong Bae. T model of growth and its application in systems of tumor-immune dynamics. Mathematical Biosciences & Engineering, 2013, 10 (3) : 925-938. doi: 10.3934/mbe.2013.10.925

[7]

Giulio Caravagna, Alex Graudenzi, Alberto d’Onofrio. Distributed delays in a hybrid model of tumor-Immune system interplay. Mathematical Biosciences & Engineering, 2013, 10 (1) : 37-57. doi: 10.3934/mbe.2013.10.37

[8]

Martina Conte, Maria Groppi, Giampiero Spiga. Qualitative analysis of kinetic-based models for tumor-immune system interaction. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2393-2414. doi: 10.3934/dcdsb.2018060

[9]

Wei Feng, Shuhua Hu, Xin Lu. Optimal controls for a 3-compartment model for cancer chemotherapy with quadratic objective. Conference Publications, 2003, 2003 (Special) : 544-553. doi: 10.3934/proc.2003.2003.544

[10]

Urszula Ledzewicz, Heinz Schättler. The Influence of PK/PD on the Structure of Optimal Controls in Cancer Chemotherapy Models. Mathematical Biosciences & Engineering, 2005, 2 (3) : 561-578. doi: 10.3934/mbe.2005.2.561

[11]

Urszula Ledzewicz, Heinz Schättler. Drug resistance in cancer chemotherapy as an optimal control problem. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 129-150. doi: 10.3934/dcdsb.2006.6.129

[12]

Craig Collins, K. Renee Fister, Bethany Key, Mary Williams. Blasting neuroblastoma using optimal control of chemotherapy. Mathematical Biosciences & Engineering, 2009, 6 (3) : 451-467. doi: 10.3934/mbe.2009.6.451

[13]

Urszula Ledzewicz, Heinz Schättler. On the optimality of singular controls for a class of mathematical models for tumor anti-angiogenesis. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 691-715. doi: 10.3934/dcdsb.2009.11.691

[14]

Dan Liu, Shigui Ruan, Deming Zhu. Stable periodic oscillations in a two-stage cancer model of tumor and immune system interactions. Mathematical Biosciences & Engineering, 2012, 9 (2) : 347-368. doi: 10.3934/mbe.2012.9.347

[15]

Heinz Schättler, Urszula Ledzewicz, Benjamin Cardwell. Robustness of optimal controls for a class of mathematical models for tumor anti-angiogenesis. Mathematical Biosciences & Engineering, 2011, 8 (2) : 355-369. doi: 10.3934/mbe.2011.8.355

[16]

Baltazar D. Aguda, Ricardo C.H. del Rosario, Michael W.Y. Chan. Oncogene-tumor suppressor gene feedback interactions and their control. Mathematical Biosciences & Engineering, 2015, 12 (6) : 1277-1288. doi: 10.3934/mbe.2015.12.1277

[17]

Luis A. Fernández, Cecilia Pola. Catalog of the optimal controls in cancer chemotherapy for the Gompertz model depending on PK/PD and the integral constraint. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1563-1588. doi: 10.3934/dcdsb.2014.19.1563

[18]

Urszula Ledzewicz, Heinz Schättler, Mostafa Reisi Gahrooi, Siamak Mahmoudian Dehkordi. On the MTD paradigm and optimal control for multi-drug cancer chemotherapy. Mathematical Biosciences & Engineering, 2013, 10 (3) : 803-819. doi: 10.3934/mbe.2013.10.803

[19]

Urszula Ledzewicz, Shuo Wang, Heinz Schättler, Nicolas André, Marie Amélie Heng, Eddy Pasquier. On drug resistance and metronomic chemotherapy: A mathematical modeling and optimal control approach. Mathematical Biosciences & Engineering, 2017, 14 (1) : 217-235. doi: 10.3934/mbe.2017014

[20]

Urszula Ledzewicz, Helmut Maurer, Heinz Schättler. Optimal and suboptimal protocols for a mathematical model for tumor anti-angiogenesis in combination with chemotherapy. Mathematical Biosciences & Engineering, 2011, 8 (2) : 307-323. doi: 10.3934/mbe.2011.8.307

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (3)
  • HTML views (0)
  • Cited by (11)

[Back to Top]